1,115 research outputs found
Phenolic compounds in young developing kiwifruit in relation to light exposure: Implications for fruit calcium accumulation
The interaction between light availability and the biosynthesis of phenolic compounds in fruit of kiwifruit (Actinidia deliciosa var. deliciosa, C.F. Liang et A. R. Ferguson) was investigated. Fruits were exposed either to natural light or were artificially shaded while growing on mature vines and were analysed weekly during the first 11 weeks of development. Phenols were identified and quantified by using High Performance Liquid Chromatography (HPLC). Results showed that the predominant phenolic compounds were hydroxycinnamic acids (HCAs), flavonols and the flavan 3-ol epicatechin. Calcium (Ca2+), the main mineral nutrient involved in fruit quality was also determined. Light significantly increased the accumulation of both phenols and Ca2+ into the fruit. This work expands the list of known phenolics in kiwifruit and provides a possible explanation for the seasonal pattern of Ca2+ import into the fruit. Results on light–phenol interaction being apparently beneficial for fruit Ca2+ accumulation, suggest that accurate canopy management could enhance fruit quality
Probabilistic Clustering of Time-Evolving Distance Data
We present a novel probabilistic clustering model for objects that are
represented via pairwise distances and observed at different time points. The
proposed method utilizes the information given by adjacent time points to find
the underlying cluster structure and obtain a smooth cluster evolution. This
approach allows the number of objects and clusters to differ at every time
point, and no identification on the identities of the objects is needed.
Further, the model does not require the number of clusters being specified in
advance -- they are instead determined automatically using a Dirichlet process
prior. We validate our model on synthetic data showing that the proposed method
is more accurate than state-of-the-art clustering methods. Finally, we use our
dynamic clustering model to analyze and illustrate the evolution of brain
cancer patients over time
Highly conserved gene order and numerous novel repetitive elements in genomic regions linked to wing pattern variation in Heliconius butterflies
This is the final version of the article. Available from the publisher via the DOI in this record.BACKGROUND: With over 20 parapatric races differing in their warningly colored wing patterns, the butterfly Heliconius erato provides a fascinating example of an adaptive radiation. Together with matching races of its co-mimic Heliconius melpomene, H. erato also represents a textbook case of Müllerian mimicry, a phenomenon where common warning signals are shared amongst noxious organisms. It is of great interest to identify the specific genes that control the mimetic wing patterns of H. erato and H. melpomene. To this end we have undertaken comparative mapping and targeted genomic sequencing in both species. This paper reports on a comparative analysis of genomic sequences linked to color pattern mimicry genes in Heliconius. RESULTS: Scoring AFLP polymorphisms in H. erato broods allowed us to survey loci at approximately 362 kb intervals across the genome. With this strategy we were able to identify markers tightly linked to two color pattern genes: D and Cr, which were then used to screen H. erato BAC libraries in order to identify clones for sequencing. Gene density across 600 kb of BAC sequences appeared relatively low, although the number of predicted open reading frames was typical for an insect. We focused analyses on the D- and Cr-linked H. erato BAC sequences and on the Yb-linked H. melpomene BAC sequence. A comparative analysis between homologous regions of H. erato (Cr-linked BAC) and H. melpomene (Yb-linked BAC) revealed high levels of sequence conservation and microsynteny between the two species. We found that repeated elements constitute 26% and 20% of BAC sequences from H. erato and H. melpomene respectively. The majority of these repetitive sequences appear to be novel, as they showed no significant similarity to any other available insect sequences. We also observed signs of fine scale conservation of gene order between Heliconius and the moth Bombyx mori, suggesting that lepidopteran genome architecture may be conserved over very long evolutionary time scales. CONCLUSION: Here we have demonstrated the tractability of progressing from a genetic linkage map to genomic sequence data in Heliconius butterflies. We have also shown that fine-scale gene order is highly conserved between distantly related Heliconius species, and also between Heliconius and B. mori. Together, these findings suggest that genome structure in macrolepidoptera might be very conserved, and show that mapping and positional cloning efforts in different lepidopteran species can be reciprocally informative.The work was funded by U.S. National Science Foundation grants IOB
0344705 and DEB 0715096 to WOM. The H. erato BAC library was constructed
by C. Wu, H. Zhang (TAMU), and M. R. Goldsmith (URI) under
NSF Grant IBN-0208388. In addition, the Computational Biology Service
Unit at Cornell University, which is partially funded by Microsoft Corporation,
provided bioinformatics support for our analysis of genomic repeat
structure. AFLP analysis and sequencing of PCR products was carried out
at the Sequencing and Genotyping Center at the University of Puerto RicoRio
Piedras. We thank Nicola Flanagan, Alexandra Tobler, Karla Maldonado,
Jenny Acevedo Gonzales, Hector Alejandro Merchan, Yhadi Cotto,
Kelitt Santiago and Felix Araujo Perez for help in rearing and maintaining
butterfly stocks. Finally, a special thanks to Daniel P. Lindstrom for his support
and helpful suggestions during manuscript preparation
New Chiral Phases of Superfluid 3He Stabilized by Anisotropic Silica Aerogel
A rich variety of Fermi systems condense by forming bound pairs, including
high temperature [1] and heavy fermion [2] superconductors, Sr2RuO4 [3], cold
atomic gases [4], and superfluid 3He [5]. Some of these form exotic quantum
states having non-zero orbital angular momentum. We have discovered, in the
case of 3He, that anisotropic disorder, engineered from highly porous silica
aerogel, stabilizes a chiral superfluid state that otherwise would not exist.
Additionally, we find that the chiral axis of this state can be uniquely
oriented with the application of a magnetic field perpendicular to the aerogel
anisotropy axis. At suffciently low temperature we observe a sharp transition
from a uniformly oriented chiral state to a disordered structure consistent
with locally ordered domains, contrary to expectations for a superfluid glass
phase [6].Comment: 6 pages, 4 figure, and Supplementary Informatio
The morphologies of massive galaxies at 1 < z < 3 in the CANDELS-UDS field : compact bulges, and the rise and fall of massive discs
We have used high-resolution, Hubble Space Telescope, near-infrared imaging to conduct a detailed analysis of the morphological properties of the most massive galaxies at high redshift, modelling the WFC3/IR H-160-band images of the similar or equal to 200 galaxies in the CANDELS-UDS field with photometric redshifts 1 10(11)M(circle dot). We have explored the results of fitting single-Sersic and bulge+disc models, and have investigated the additional errors and potential biases introduced by uncertainties in the background and the on-image point spread function. This approach has enabled us to obtain formally acceptable model fits to the WFC3/IR images of > 90 per cent of the galaxies. Our results indicate that these massive galaxies at 1 2 the compact bulges display effective radii a factor of similar or equal to 4 smaller than local ellipticals of comparable mass. These trends also appear to extend to the bulge components of disc-dominated galaxies. In addition, we find that, while such massive galaxies at low redshift are generally bulge-dominated, at redshifts 1 2 they are mostly disc-dominated. The majority of the disc-dominated galaxies are actively forming stars, although this is also true for many of the bulge-dominated systems. Interestingly, however, while most of the quiescent galaxies are bulge-dominated, we find that a significant fraction (25-40 per cent) of the most quiescent galaxies, with specific star formation rates sSFR < 10(-10) yr(-1), have disc-dominated morphologies. Thus, while our results show that the massive galaxy population is undergoing dramatic changes at this crucial epoch, they also suggest that the physical mechanisms which quench star formation activity are not simply connected to those responsible for the morphological transformation of massive galaxies into present-day giant ellipticals
Impaired decisional impulsivity in pathological videogamers
Abstract
Background
Pathological gaming is an emerging and poorly understood problem. Impulsivity is commonly impaired in disorders of behavioural and substance addiction, hence we sought to systematically investigate the different subtypes of decisional and motor impulsivity in a well-defined pathological gaming cohort.
Methods
Fifty-two pathological gaming subjects and age-, gender- and IQ-matched healthy volunteers were tested on decisional impulsivity (Information Sampling Task testing reflection impulsivity and delay discounting questionnaire testing impulsive choice), and motor impulsivity (Stop Signal Task testing motor response inhibition, and the premature responding task). We used stringent diagnostic criteria highlighting functional impairment.
Results
In the Information Sampling Task, pathological gaming participants sampled less evidence prior to making a decision and scored fewer points compared with healthy volunteers. Gaming severity was also negatively correlated with evidence gathered and positively correlated with sampling error and points acquired. In the delay discounting task, pathological gamers made more impulsive choices, preferring smaller immediate over larger delayed rewards. Pathological gamers made more premature responses related to comorbid nicotine use. Greater number of hours played also correlated with a Motivational Index. Greater frequency of role playing games was associated with impaired motor response inhibition and strategy games with faster Go reaction time.
Conclusions
We show that pathological gaming is associated with impaired decisional impulsivity with negative consequences in task performance. Decisional impulsivity may be a potential target in therapeutic management
Sensory Measurements: Coordination and Standardization
Do sensory measurements deserve the label of “measurement”? We argue that they do. They fit with an epistemological view of measurement held in current philosophy of science, and they face the same kinds of epistemological challenges as physical measurements do: the problem of coordination and the problem of standardization. These problems are addressed through the process of “epistemic iteration,” for all measurements. We also argue for distinguishing the problem of standardization from the problem of coordination. To exemplify our claims, we draw on olfactory performance tests, especially studies linking olfactory decline to neurodegenerative disorders
Structural parameters of galaxies in CANDELS
We present global structural parameter measurements of 109,533 unique, H-F160W-selected objects from the CANDELS multi-cycle treasury program. Sersic model fits for these objects are produced with GALFIT in all available near-infrared filters (H-F160W, J(F125W) and, for a subset, Y-F105W). The parameters of the best-fitting Sersic models (total magnitude, half-light radius, Sersic index, axis ratio, and position angle) are made public, along with newly constructed point-spread functions for each field and filter. Random uncertainties in the measured parameters are estimated for each individual object based on a comparison between multiple, independent measurements of the same set of objects. To quantify systematic uncertainties, we create a mosaic with simulated galaxy images with a realistic distribution of input parameters and then process and analyze the mosaic in an identical manner as the real data. We find that accurate and precise measurements-to 10% or better-of all structural parameters can typically be obtained for galaxies with H-F160W < 23, with comparable fidelity for basic size and shape measurements for galaxies to H-F160W similar to 24.5
Modelling imperfect adherence to HIV induction therapy
Abstract
Background
Induction-maintenance therapy is a treatment regime where patients are prescribed an intense course of treatment for a short period of time (the induction phase), followed by a simplified long-term regimen (maintenance). Since induction therapy has a significantly higher chance of pill fatigue than maintenance therapy, patients might take drug holidays during this period. Without guidance, patients who choose to stop therapy will each be making individual decisions, with no scientific basis.
Methods
We use mathematical modelling to investigate the effect of imperfect adherence during the inductive phase. We address the following research questions: 1. Can we theoretically determine the maximal length of a possible drug holiday and the minimal number of doses that must subsequently be taken while still avoiding resistance? 2. How many drug holidays can be taken during the induction phase?
Results
For a 180 day therapeutic program, a patient can take several drug holidays, but then has to follow each drug holiday with a strict, but fairly straightforward, drug-taking regimen. Since the results are dependent upon the drug regimen, we calculated the length and number of drug holidays for all fifteen protease-sparing triple-drug cocktails that have been approved by the US Food and Drug Administration.
Conclusions
Induction therapy with partial adherence is tolerable, but the outcome depends on the drug cocktail. Our theoretical predictions are in line with recent results from pilot studies of short-cycle treatment interruption strategies and may be useful in guiding the design of future clinical trials
Phenoloxidase activity acts as a mosquito innate immune response against infection with semliki forest virus
Several components of the mosquito immune system including the RNA interference (RNAi), JAK/STAT, Toll and IMD pathways have previously been implicated in controlling arbovirus infections. In contrast, the role of the phenoloxidase (PO) cascade in mosquito antiviral immunity is unknown. Here we show that conditioned medium from the Aedes albopictus-derived U4.4 cell line contains a functional PO cascade, which is activated by the bacterium Escherichia coli and the arbovirus Semliki Forest virus (SFV) (Togaviridae; Alphavirus). Production of recombinant SFV expressing the PO cascade inhibitor Egf1.0 blocked PO activity in U4.4 cell- conditioned medium, which resulted in enhanced spread of SFV. Infection of adult female Aedes aegypti by feeding mosquitoes a bloodmeal containing Egf1.0-expressing SFV increased virus replication and mosquito mortality. Collectively, these results suggest the PO cascade of mosquitoes plays an important role in immune defence against arboviruses
- …