23 research outputs found

    Impediment in upper airway stabilizing forces assessed by phrenic nerve stimulation in sleep apnea patients

    Get PDF
    BACKGROUND: The forces developed during inspiration play a key role in determining upper airway stability and the occurrence of nocturnal breathing disorders. Phrenic nerve stimulation applied during wakefulness is a unique tool to assess Upper airway dynamic properties and to measure the overall mechanical effects of the inspiratory process on UA stability. OBJECTIVES: To compare the flow/pressure responses to inspiratory and expiratory twitches between sleep apnea subjects and normal subjects. METHODS: Inspiratory and expiratory twitches using magnetic nerve stimulation completed in eleven untreated sleep apnea subjects and ten normal subjects. RESULTS: In both groups, higher flow and pressure were reached during inspiratory twitches. The two groups showed no differences in expiratory twitch parameters. During inspiration, the pressure at which flow-limitation occurred was more negative in normals than in apneic subjects, but not reaching significance (p = 0.07). The relationship between pharyngeal pressure and flow adequately fitted with a polynomial regression model providing a measurement of upper airway critical pressure during twitch. This pressure significantly decreased in normals from expiratory to inspiratory twitches (-11.1 ± 1.6 and -15.7 ± 1.0 cm H(2)O respectively, 95% CI 1.6–7.6, p < 0.01), with no significant difference between the two measurements in apneic subjects. The inspiratory/expiratory difference in critical pressure was significantly correlated with the frequency of nocturnal breathing disorders. CONCLUSION: Inspiratory-related upper airway dilating forces are impeded in sleep apnea patients

    What is the role of the corpus callosum in intermanual transfer of motor skills? A study of three cases with callosal pathology

    No full text
    Intermanual transfer for a skilled motor task was studied in two patients with total callosal agenesis, and one with an acquired partial callosal lesion and clinical evidence for disturbed transfer of motor signals. Patients had to draw meaningless figures with one upper extremity (original learning, OL) and to reproduce their mirror-reversals thereafter with the other side (transfer learning, TL). Both directions of intermanual transfer were tested in two conditions, that is, between either proximal or distal muscle groups. Transfer was evaluated by comparing OL and TL performance at the same effector. The main variable of interest was movement time during the first eight trials of OL and TL. All three patients displayed a significant benefit for transfer from the dominant to the non-dominant hand but not vice versa during proximal motor activity. When compared with the performance of healthy subjects tested in almost identical conditions in a previously reported study, the proximal transfer behavior was found to be similar for all patients and the normal group. Although patients exhibited no significant benefit for distal transfer, their non-dominant-to-dominant distal transfer was above the normal range. The similar transfer pattern of the patients and healthy subjects when using proximal musculature suggests that proximal transfer may be subserved by identical extracallosal pathways, most probably by the ipsilaterally descending motor systems. Since non-dominant-to-dominant distal transfer was found to be disadvantageous in healthy subjects, the patients' relative superiority in this condition may reflect missing callosal influences of an inhibitory nature
    corecore