10 research outputs found

    Vibrational mode-specific reaction of methane on a nickel surface

    No full text
    The dissociation of methane on a nickel catalyst is a key step in steam reforming of natural gas for hydrogen production. Despite substantial effort in both experiment and theory, there is still no atomic-scale description of this important gas-surface reaction. We report quantum state-resolved studies, using pulsed laser and molecular beam techniques, of vibrationally excited methane reacting on the nickel (100) surface. For doubly deuterated methane (CD2H2), we observed that the reaction probability with two quanta of excitation in one C-H bond was greater (by as much as a factor of 5) than with one quantum in each of two C-H bonds. These results clearly exclude the possibility of statistical models correctly describing the mechanism of this process and attest to the importance of full-dimensional calculations of the reaction dynamics

    CO adsorption on hydrogen saturated Ru(0001)

    Get PDF
    The interaction of CO with the Ru(0001)(1 x 1)H surface has been studied by density functional theory (DFT) periodic calculations and molecular beam techniques. The hydrogen (1 x 1) phase induces an activation barrier for CO adsorption with a minimum barrier height of 25 kJ mol(-1). The barrier originates from the initial repulsive interaction between the CO-4 sigma and the Ru-d(3z2-r2) orbitals. Coadsorbed H also reduces the CO adsorption energy considerably and enhances the site preference of CO. On a Ru(0001)(1 x 1)H surface, CO adsorbs exclusively on the atop position. (C) 2001 American Institute of Physic
    corecore