332 research outputs found

    Understanding and Overcoming the Challenges Related to Cardiovascular Trials Involving Patients with Kidney Disease.

    Get PDF
    Cardiovascular disease is a prevalent and prognostically important comorbidity among patients with kidney disease, and individuals with kidney disease make up a sizeable proportion (30%-60%) of patients with cardiovascular disease. However, several systematic reviews of cardiovascular trials have observed that patients with kidney disease, particularly those with advanced kidney disease, are often excluded from trial participation. Thus, currently available trial data for cardiovascular interventions in patients with kidney disease may be insufficient to make recommendations on the optimal approach for many therapies. The Kidney Health Initiative, a public-private partnership between the American Society of Nephrology and the US Food and Drug Administration, convened a multidisciplinary, international work group and hosted a stakeholder workshop intended to understand and develop strategies for overcoming the challenges with involving patients with kidney disease in cardiovascular clinical trials, with a particular focus on those with advanced disease. These efforts considered perspectives from stakeholders, including academia, industry, contract research organizations, regulatory agencies, patients, and care partners. This article outlines the key challenges and potential solutions discussed during the workshop centered on the following areas for improvement: building the business case, re-examining study design and implementation, and changing the clinical trial culture in nephrology. Regulatory and financial incentives could serve to mitigate financial concerns with involving patients with kidney disease in cardiovascular trials. Concerns that their inclusion could affect efficacy or safety results could be addressed through thoughtful approaches to study design and risk mitigation strategies. Finally, there is a need for closer collaboration between nephrologists and cardiologists and systemic change within the nephrology community such that participation of patients with kidney disease in clinical trials is prioritized. Ultimately, greater participation of patients with kidney disease in cardiovascular trials will help build the evidence base to guide optimal management of cardiovascular disease for this population

    Operator theory and function theory in Drury-Arveson space and its quotients

    Full text link
    The Drury-Arveson space Hd2H^2_d, also known as symmetric Fock space or the dd-shift space, is a Hilbert function space that has a natural dd-tuple of operators acting on it, which gives it the structure of a Hilbert module. This survey aims to introduce the Drury-Arveson space, to give a panoramic view of the main operator theoretic and function theoretic aspects of this space, and to describe the universal role that it plays in multivariable operator theory and in Pick interpolation theory.Comment: Final version (to appear in Handbook of Operator Theory); 42 page

    The Cosmological Baryon Density from the Deuterium Abundance at a redshift z = 3.57

    Full text link
    We present a measurement of the deuterium to hydrogen ratio in a quasar absorption system at redshift z = 3.57 towards QSO 1937-1009. We use a two component fit, with redshifts determined from unsaturated metal lines, to fit the hydrogen and deuterium features simultaneously. We find a low value of D/H = 2.3 \pm 0.6 \times 10^{-5}, which does not agree with other measurements of high D/H (Songaila et al. 1994, Carswell et al. 1994). The absorption system is very metal poor, with metallicities less than 1/100 solar. Standard models of chemical evolution show the astration of deuterium is limited to a few percent from primordial for systems this metal-poor, so we believe our value represents the primordial one. Using predictions of standard big-bang nucleosynthesis and measurements of the cosmic microwave background, our measurement gives the density of baryons in units of the critical density, Ωbh2=0.024±0.006\Omega_b h^2 = 0.024 \pm 0.006, where H_0 = 100 h km s^{-1] Mpc^{-1}.Comment: 10 pages, 2 Figures, also available at http://nately.ucsd.edu/ ; submitted to Natur

    Chronic depression: development and evaluation of the luebeck questionnaire for recording preoperational thinking (LQPT)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A standardized instrument for recording the specific cognitive psychopathology of chronically depressed patients has not yet been developed. Up until now, preoperational thinking of chronically depressed patients has only been described in case studies, or through the external observations of therapists. The aim of this study was to develop and evaluate a standardized self-assessment instrument for measuring preoperational thinking that sufficiently conforms to the quality criteria for test theory.</p> <p>Methods</p> <p>The "Luebeck Questionnaire for Recording Preoperational Thinking (LQPT)" was developed and evaluated using a german sample consisting of 30 episodically depressed, 30 chronically depressed and 30 healthy volunteers. As an initial step the questionnaire was subjected to an item analysis and a final test form was compiled. In a second step, reliability and validity tests were performed.</p> <p>Results</p> <p>Overall, the results of this study showed that the LQPT is a useful, reliable and valid instrument. The reliability (split-half reliability 0.885; internal consistency 0.901) and the correlations with other instruments for measuring related constructs (control beliefs, interpersonal problems, stress management) proved to be satisfactory. Chronically depressed patients, episodically depressed patients and healthy volunteers could be distinguished from one another in a statistically significant manner (p < 0.001).</p> <p>Conclusion</p> <p>The questionnaire fulfilled the classical test quality criteria. With the LQPT there is an opportunity to test the theory underlying the CBASP model.</p

    Higher incidence of perineal community acquired MRSA infections among toddlers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A six-fold increase in pediatric MRSA infections, prompted us to examine the clinical profile of children with MRSA infections seen at Mercy Children's Hospital, Toledo, Ohio and to characterize the responsible strains.</p> <p>Methods</p> <p>Records were reviewed of pediatric patients who cultured positive for MRSA from June 1 to December 31, 2007. Strain typing by pulsed field gel electrophoresis (PFT) and DiversiLab, SCC<it>mec </it>typing, and PCR-based <it>lukSF-PV </it>gene (encodes Panton-Valentine leukocidin), arginine catabolic mobile element (ACME) and <it>cap</it>5 gene detection was performed.</p> <p>Results</p> <p>Chart review of 63 patients with MRSA infections revealed that 58(92%) were community acquired MRSA (CAMRSA). All CAMRSA were skin and soft tissue infections (SSTI). Twenty five (43%) patients were aged < 3 yrs, 19(33%) aged 4-12 and 14(24%) aged 13-18. Nineteen (76%) of those aged < 3 yrs had higher incidence of perineal infections compared to only 2(11%) of the 4-12 yrs and none of the 13-18 yrs of age. Infections in the extremities were more common in the older youth compared to the youngest children. Overall, there was a significant association between site of the infection and age group (Fisher's Exact p-value < 0.001). All CAMRSA were USA300 PFT, clindamycin susceptible, SCC<it>mec </it>type IVa and <it>lukSF-PV gene </it>positive. Nearly all contained ACME and about 80% were <it>cap</it>5 positive. Of the 58 USA300 strains by PFT, 55(95%) were also identified as USA300 via the automated repetitive sequence-based PCR method from DiversiLab.</p> <p>Conclusions</p> <p>CAMRSA SSTI of the perineum was significantly more common among toddlers and that of the extremities in older children. The infecting strains were all USA300 PFT. Further studies are needed to identify the unique virulence and colonization characteristics of USA300 strains in these infections.</p

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Association of prediagnostic vitamin D status with mortality among colorectal cancer patients differs by common, inherited vitamin D-binding protein isoforms

    Get PDF
    Lower prediagnostic circulating 25‐hydroxyvitamin D (25[OH]D)—considered the best marker of total vitamin D exposure—is associated with higher mortality risk among colorectal cancer (CRC) patients. However, it is unknown whether this association differs by the vitamin D‐binding protein (GC) isoform Gc2 (encoded by GC rs4588*C>A, Thr436Lys), which may substantially affect vitamin D metabolism and modify associations of 25(OH)D with colorectal neoplasm risk. Prediagnostic 25(OH)D‐mortality associations according to Gc2 isoform were estimated using multivariable Cox proportional hazards regression among 1281 CRC cases (635 deaths, 483 from CRC) from two large prospective cohorts conducted in the United States (Cancer Prevention Study‐II) and Europe (European Prospective Investigation into Cancer and Nutrition). 25(OH)D measurements were calibrated to a single assay, season standardized, and categorized using Institute of Medicine recommendations (deficient [<30], insufficient [30 ‐ <50], sufficient [≄50 nmol/L]). In the pooled analysis, multivariable‐adjusted hazard ratios (HRs) for CRC‐specific mortality associated with deficient relative to sufficient 25(OH)D concentrations were 2.24 (95% CI 1.44‐3.49) among cases with the Gc2 isoform, and 0.94 (95% CI 0.68‐1.22) among cases without Gc2 (P interaction = .0002). The corresponding HRs for all‐cause mortality were 1.80 (95% CI 1.24‐2.60) among those with Gc2, and 1.12 (95% CI 0.84‐1.51) among those without Gc2 (P interaction = .004). Our findings suggest that the association of prediagnostic vitamin D status with mortality among CRC patients may differ by functional GC isoforms, and patients who inherit the Gc2 isoform (GC rs4588*A) may particularly benefit from higher circulating 25(OH)D for improved CRC prognosis
    • 

    corecore