509 research outputs found
C-ME: A 3D Community-Based, Real-Time Collaboration Tool for Scientific Research and Training
The need for effective collaboration tools is growing as multidisciplinary proteome-wide projects and distributed research teams become more common. The resulting data is often quite disparate, stored in separate locations, and not contextually related. Collaborative Molecular Modeling Environment (C-ME) is an interactive community-based collaboration system that allows researchers to organize information, visualize data on a two-dimensional (2-D) or three-dimensional (3-D) basis, and share and manage that information with collaborators in real time. C-ME stores the information in industry-standard databases that are immediately accessible by appropriate permission within the computer network directory service or anonymously across the internet through the C-ME application or through a web browser. The system addresses two important aspects of collaboration: context and information management. C-ME allows a researcher to use a 3-D atomic structure model or a 2-D image as a contextual basis on which to attach and share annotations to specific atoms or molecules or to specific regions of a 2-D image. These annotations provide additional information about the atomic structure or image data that can then be evaluated, amended or added to by other project members
Roles for Treg expansion and HMGB1 signaling through the TLR1-2-6 axis in determining the magnitude of the antigen-specific immune response to MVA85A
© 2013 Matsumiya et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedA better understanding of the relationships between vaccine, immunogenicity and protection from disease would greatly facilitate vaccine development. Modified vaccinia virus Ankara expressing antigen 85A (MVA85A) is a novel tuberculosis vaccine candidate designed to enhance responses induced by BCG. Antigen-specific interferon-γ (IFN-γ) production is greatly enhanced by MVA85A, however the variability between healthy individuals is extensive. In this study we have sought to characterize the early changes in gene expression in humans following vaccination with MVA85A and relate these to long-term immunogenicity. Two days post-vaccination, MVA85A induces a strong interferon and inflammatory response. Separating volunteers into high and low responders on the basis of T cell responses to 85A peptides measured during the trial, an expansion of circulating CD4+ CD25+ Foxp3+ cells is seen in low but not high responders. Additionally, high levels of Toll-like Receptor (TLR) 1 on day of vaccination are associated with an increased response to antigen 85A. In a classification model, combined expression levels of TLR1, TICAM2 and CD14 on day of vaccination and CTLA4 and IL2Rα two days post-vaccination can classify high and low responders with over 80% accuracy. Furthermore, administering MVA85A in mice with anti-TLR2 antibodies may abrogate high responses, and neutralising antibodies to TLRs 1, 2 or 6 or HMGB1 decrease CXCL2 production during in vitro stimulation with MVA85A. HMGB1 is released into the supernatant following atimulation with MVA85A and we propose this signal may be the trigger activating the TLR pathway. This study suggests an important role for an endogenous ligand in innate sensing of MVA and demonstrates the importance of pattern recognition receptors and regulatory T cell responses in determining the magnitude of the antigen specific immune response to vaccination with MVA85A in humans.This work was funded by the Wellcome Trust. MM has a Wellcome Trust PhD studentship and HM is a Wellcome Trust Senior Fello
HumMeth27QCReport: an R package for quality control and primary analysis of Illumina Infinium methylation data
<p>Abstract</p> <p>Background</p> <p>The study of the human DNA methylome has gained particular interest in the last few years. Researchers can nowadays investigate the potential role of DNA methylation in common disorders by taking advantage of new high-throughput technologies. Among these, Illumina Infinium assays can interrogate the methylation levels of hundreds of thousands of CpG sites, offering an ideal solution for genome-wide methylation profiling. However, like for other high-throughput technologies, the main bottleneck remains at the stage of data analysis rather than data production.</p> <p>Findings</p> <p>We have developed <it>HumMeth27QCReport</it>, an R package devoted to researchers wanting to quickly analyse their Illumina Infinium methylation arrays. This package automates quality control steps by generating a report including sample-independent and sample-dependent quality plots, and performs primary analysis of raw methylation calls by computing data normalization, statistics, and sample similarities. This package is available at CRAN repository, and can be integrated in any Galaxy instance through the implementation of ad-hoc scripts accessible at Galaxy Tool Shed.</p> <p>Conclusions</p> <p>Our package provides users of the Illumina Infinium Methylation assays with a simplified, automated, open-source quality control and primary analysis of their methylation data. Moreover, to enhance its use by experimental researchers, the tool is being distributed along with the scripts necessary for its implementation in the Galaxy workbench. Finally, although it was originally developed for HumanMethylation27, we proved its compatibility with data generated with the HumanMethylation450 Bead Chip.</p
Prospective study of patients with persistent symptoms of dengue in Brazil
Dengue is an arboviral infection clinically recognized as an acute and self-limited disease. Persistence of dengue symptoms is known, but it has been little studied. The aim of this study was to characterize persistent symptoms in 113 patients with dengue followed up clinically and by laboratory testing at a tertiary hospital. Symptoms that persisted for more than 14 days were observed in 61 (54.0%) patients, and six (6.2%) of them had symptoms for 6 months or more. The persistent symptoms identified were myalgia, weakness, hair loss, memory loss, reduced resistance to physical effort, headache, reasoning problems, arthralgia, sleepiness- and emotional lability. The progression to persistent symptoms was significantly associated with hospitalization, older age, more severe disease, the presence of bleeding and comorbidities upon univariate analysis. Upon multivariate analysis, the presence of persistent symptoms continued to be significantly associated only with increased age and dengue with warning signs. The platelet count during the acute phase of the disease was significantly lower in the group with persistent symptoms. In conclusion, the frequency of progression to persistent symptoms in dengue is relevant in patients seen at a tertiary hospital and the persistence of symptoms is more common in patients with dengue with warning signs
Confirmed adult dengue deaths in Singapore: 5-year multi-center retrospective study
10.1186/1471-2334-11-123BMC Infectious Diseases11-BIDM
Genetic and Proteomic Approaches to Identify Cancer Drug Targets
While target-based small-molecule discovery has taken centre-stage in the pharmaceutical industry, there are many cancer-promoting proteins not easily addressed with a traditional target-based screening approach. In order to address this problem, as well as to identify modulators of biological states in the absence of knowing the protein target of the state switch, alternative phenotypic screening approaches, such as gene expression-based and high-content imaging, have been developed. With this renewed interest in phenotypic screening, however, comes the challenge of identifying the binding protein target(s) of small-molecule hits. Emerging technologies have the potential to improve the process of target identification. In this review, we discuss the application of genomic (gene expression-based), genetic (short hairpin RNA and open reading frame screening), and proteomic approaches to protein target identification
Using a psychosocial subgroup assignment to predict sickness absence in a working population with neck and back pain
<p>Abstract</p> <p>Background</p> <p>The overall objective was to evaluate the predictive validity of a subgroup classification based on the Swedish version of the MPI, the MPI-S, among gainfully employed workers with neck pain (NP) and/or low back pain (LBP) during a follow-up period of 18 and 36 months.</p> <p>Methods</p> <p>This is a prospective cohort study that is part of a larger longitudinal multi-centre study entitled Work and Health in the Process and Engineering Industries (AHA). The attempt was to classify individuals at risk for developing chronic disabling NP and LBP. This is the first study using the MPI-questionnaire in a working population with NP and LBP.</p> <p>Results</p> <p>Dysfunctional individuals (DYS) demonstrated more statistically significant sickness absence compared to adaptive copers (AC) after 36 months. DYS also had a threefold increase in the risk ratio of long-term sickness absence at 18 months. Interpersonally distressed (ID) subgroup showed overall more sickness absence compared to the AC subgroup at the 36-month follow-up and had a twofold increase in the risk ratio of long-term sickness absence at 18 months. There was a significant difference in bodily pain, mental and physical health for ID and DYS subgroups compared to the AC group at both follow-ups.</p> <p>Conclusions</p> <p>The present study shows that this multidimensional approach to the classification of individuals based on psychological and psychosocial characteristics can distinguish different groups in gainfully employed working population with NP/LBP. The results in this study confirm the predictive validity of the MPI-S subgroup classification system.</p
Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015
SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation
Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress
In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse
- …