19 research outputs found

    Molecular analysis of the vaginal response to estrogens in the ovariectomized rat and postmenopausal woman

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Vaginal atrophy (VA) is the thinning of the vaginal epithelial lining, typically the result of lowered estrogen levels during menopause. Some of the consequences of VA include increased susceptibility to bacterial infection, pain during sexual intercourse, and vaginal burning or itching. Although estrogen treatment is highly effective, alternative therapies are also desired for women who are not candidates for post-menopausal hormone therapy (HT). The ovariectomized (OVX) rat is widely accepted as an appropriate animal model for many estrogen-dependent responses in humans; however, since reproductive biology can vary significantly between mammalian systems, this study examined how well the OVX rat recapitulates human biology.</p> <p>Methods</p> <p>We analyzed 19 vaginal biopsies from human subjects pre and post 3-month 17β-estradiol treated by expression profiling. Data were compared to transcriptional profiling generated from vaginal samples obtained from ovariectomized rats treated with 17β-estradiol for 6 hrs, 3 days or 5 days. The level of differential expression between pre- vs. post- estrogen treatment was calculated for each of the human and OVX rat datasets. Probe sets corresponding to orthologous rat and human genes were mapped to each other using NCBI Homologene.</p> <p>Results</p> <p>A positive correlation was observed between the rat and human responses to estrogen. Genes belonging to several biological pathways and GO categories were similarly differentially expressed in rat and human. A large number of the coordinately regulated biological processes are already known to be involved in human VA, such as inflammation, epithelial development, and EGF pathway activation.</p> <p>Conclusion</p> <p>At the transcriptional level, there is evidence of significant overlap of the effects of estrogen treatment between the OVX rat and human VA samples.</p

    The Discriminative Stimulus Properties of Drugs Used to Treat Depression and Anxiety

    No full text
    Drug discrimination is a powerful tool for evaluating the stimulus effects of psychoactive drugs and for linking these effects to pharmacological mechanisms. This chapter reviews the primary findings from drug discrimination studies of antidepressant and anxiolytic drugs, including novel pharmacological mechanisms. The stimulus properties revealed from these animal studies largely correspond to the receptor affinities of antidepressant and anxiolytic drugs, indicating that subjective effects may correspond to either therapeutic or side effects of these medications. We discuss drug discrimination findings concerning adjunctive medications and novel pharmacologic strategies in antidepressant and anxiolytic research. Future directions for drug discrimination work include an urgent need to explore the subjective effects of medications in animal models, to better understand shifts in stimulus sensitivity during prolonged treatments, and to further characterize stimulus effects in female subjects. We conclude that drug discrimination is an informative preclinical procedure that reveals the interoceptive effects of pharmacological mechanisms as they relate to behaviors that are not captured in other preclinical models
    corecore