233 research outputs found

    The effects of catchment and riparian forest quality on stream environmental conditions across a tropical rainforest and oil palm landscape in Malaysian Borneo

    Get PDF
    Freshwaters provide valuable habitat and important ecosystem services, but are threatened worldwide by habitat loss and degradation. In Southeast Asia, rainforest streams are particularly threatened by logging and conversion to oil palm, but we lack information on the impacts of this on freshwater environmental conditions, and the relative importance of catchment versus riparian-scale disturbance. We studied sixteen streams in Sabah, Borneo, including old growth forest, logged forest, and oil palm sites. We assessed forest quality in riparian zones and across the whole catchment, and compared it with stream environmental conditions including water quality, structural complexity and organic inputs. We found that streams with the highest riparian forest quality were nearly 4 °C cooler, over 20 cm deeper, had over 40% less sand, greater canopy cover, more stored leaf litter and wider channels than oil palm streams with the lowest riparian forest quality. Other variables were significantly related to catchment-scale forest quality, with streams in the highest quality forest catchments having 40% more bedrock and 20 times more dead wood, along with higher phosphorus, and lower nitrate-N levels compared to streams with the lowest catchment-scale forest quality. Although riparian buffer strips went some way to protecting waterways, they did not maintain fully forest-like stream conditions. In addition, logged forest streams still showed signs of disturbance 10-15 years after selective logging. Our results suggest that maintenance and restoration of buffer strips can help to protect healthy freshwater ecosystems, but logging practices and catchment-scale forest management also need to be considered.During this work SHL was funded by a Natural Environment Research Council (NERC) studentship (number 1122589), Proforest, the Varley Gradwell Travelling Fellowship, Tim Whitmore Fund, Panton Trust and the Cambridge University Commonwealth Fund. MP and RME were supported by European Research Council Project number 281986. HB was funded by the S.T. Lee Fund

    Changes in pathways and vectors of biological invasions in Northwest Europe

    Get PDF
    We assessed how establishment patterns of non-native freshwater, marine and terrestrial species into Northwest Europe (using Great Britain, France, Belgium and the Netherlands as the study countries) have changed over time, and identified the prevalent pathways and vectors of recent arrivals. Data were extracted from 33 sources on (a) presence/absence and (b) first year of observation in the wild in each country, and (c) continent(s) of origin, (d) invasion pathway(s), (e) invasion vector(s) and (f) environment(s) for 359 species, comprising all non-native Mollusca, Osteichthyes (bony fish), Anseriformes (wildfowl) and Mammalia, and non-native invasive Angiospermae present in the area. Molluscs, fish and wildfowl, particularly those originating from South America, arrived more recently into Northwest Europe than other groups, particularly mammals, invasive plants and species originating from North America. Non-deliberate introductions, those of aquatic species and those from elsewhere in Europe and/or Asia increased strongly in importance after the year 2000 and were responsible for 69, 83 and 89 % of new introductions between 2001 and 2015, respectively. Non-deliberate introductions and those from Asia and North America contributed significantly more to introductions of invasive species in comparison to other non-native species. From the 1960s, ornamental trade has increased in importance relative to other vectors and was responsible for all deliberate introductions of study groups since 2001. Non-deliberate introductions of freshwater and marine species originating from Southeast Europe and Asia represent an increasingly important ecological and economic threat to Northwest Europe. Invertebrates such as molluscs may be particularly dangerous due to their small size and difficulties in detection. Prevention of future invasions in this respect will require intensive screening of stowaways on boats and raising of public awareness.Research leading to this study was funded by the European Regional Development Fund through the EU co-funded Interreg 2Seas project RINSE (reducing the impact of non-native species in Europe; www.rinse-europe.eu), which seeks to improve awareness of the threats posed by INNS, and the methods to address them. AZ and BG received financial support from RINSE. AZ is supported by a Postdoctoral Research Fellowship of the University of Nottingham, Malaysia Campus. BG holds a Postdoctoral Research Fellowship from the Spanish Ministry of Economy and Competitiveness (JCI-2012-11908)

    Landmarking the brain for geometric morphometric analysis: An error study

    Get PDF
    Neuroanatomic phenotypes are often assessed using volumetric analysis. Although powerful and versatile, this approach is limited in that it is unable to quantify changes in shape, to describe how regions are interrelated, or to determine whether changes in size are global or local. Statistical shape analysis using coordinate data from biologically relevant landmarks is the preferred method for testing these aspects of phenotype. To date, approximately fifty landmarks have been used to study brain shape. Of the studies that have used landmark-based statistical shape analysis of the brain, most have not published protocols for landmark identification or the results of reliability studies on these landmarks. The primary aims of this study were two-fold: (1) to collaboratively develop detailed data collection protocols for a set of brain landmarks, and (2) to complete an intra- and inter-observer validation study of the set of landmarks. Detailed protocols were developed for 29 cortical and subcortical landmarks using a sample of 10 boys aged 12 years old. Average intra-observer error for the final set of landmarks was 1.9 mm with a range of 0.72 mm-5.6 mm. Average inter-observer error was 1.1 mm with a range of 0.40 mm-3.4 mm. This study successfully establishes landmark protocols with a minimal level of error that can be used by other researchers in the assessment of neuroanatomic phenotypes. © 2014 Chollet et al

    Four priority areas to advance invasion science in the face of rapid environmental change

    Get PDF
    Unprecedented rates of introduction and spread of non-native species pose burgeoning challenges to biodiversity, natural resource management, regional economies, and human health. Current biosecurity efforts are failing to keep pace with globalization, revealing critical gaps in our understanding and response to invasions. Here, we identify four priority areas to advance invasion science in the face of rapid global environmental change. First, invasion science should strive to develop a more comprehensive framework for predicting how the behavior, abundance, and interspecific interactions of non-native species vary in relation to conditions in receiving environments and how these factors govern the ecological impacts of invasion. A second priority is to understand the potential synergistic effects of multiple co-occurring stressors— particularly involving climate change—on the establishment and impact of non-native species. Climate adaptation and mitigation strategies will need to consider the possible consequences of promoting non-native species, and appropriate management responses to non-native species will need to be developed. The third priority is to address the taxonomic impediment. The ability to detect and evaluate invasion risks is compromised by a growing deficit in taxonomic expertise, which cannot be adequately compensated by new molecular technologies alone. Management of biosecurity risks will become increasingly challenging unless academia, industry, and governments train and employ new personnel in taxonomy and systematics. Fourth, we recommend that internationally cooperative biosecurity strategies consider the bridgehead effects of global dispersal networks, in which organisms tend to invade new regions from locations where they have already established. Cooperation among countries to eradicate or control species established in bridgehead regions should yield greater benefit than independent attempts by individual countries to exclude these species from arriving and establishing

    Subclonal TP53 copy number is associated with prognosis in multiple myeloma

    Get PDF
    Multiple myeloma (MM) is a genetically heterogeneous cancer of bone marrow plasma cells with variable outcome. To assess the prognostic relevance of clonal heterogeneity of TP53 copy number, we profiled tumors from 1777 newly diagnosed Myeloma XI trial patients with multiplex ligation-dependent probe amplification (MLPA). Subclonal TP53 deletions were independently associated with shorter overall survival, with a hazard ratio of 1.8 (95% confidence interval, 1.2-2.8; P = .01). Clonal, but not subclonal, TP53 deletions were associated with clinical markers of advanced disease, specifically lower platelet counts (P < .001) and increased lactate dehydrogenase (P < .001), as well as a higher frequency of features indicative of genomic instability, del(13q) (P = .002) or del(1p) (P = .006). Biallelic TP53 loss-of-function by mutation and deletion was rare (2.4%) and associated with advanced disease. We present a framework for identifying subclonal TP53 deletions by MLPA, to improve patient stratification in MM and tailor therapy, enabling management strategies
    corecore