20 research outputs found

    Immunomodulation with Recombinant Interferon-γ1b in Pulmonary Tuberculosis

    Get PDF
    BACKGROUND:Current treatment regimens for pulmonary tuberculosis require at least 6 months of therapy. Immune adjuvant therapy with recombinant interferon-gamma1b (rIFN-gammab) may reduce pulmonary inflammation and reduce the period of infectivity by promoting earlier sputum clearance. METHODOLOGY/PRINCIPAL FINDINGS:We performed a randomized, controlled clinical trial of directly observed therapy (DOTS) versus DOTS supplemented with nebulized or subcutaneously administered rIFN-gamma1b over 4 months to 89 patients with cavitary pulmonary tuberculosis. Bronchoalveolar lavage (BAL) and blood were sampled at 0 and 4 months. There was a significant decline in levels of inflammatory cytokines IL-1beta, IL-6, IL-8, and IL-10 in 24-hour BAL supernatants only in the nebulized rIFN-gamma1b group from baseline to week 16. Both rIFN-gamma1b groups showed significant 3-fold increases in CD4+ lymphocyte response to PPD at 4 weeks. There was a significant (p = 0.03) difference in the rate of clearance of Mtb from the sputum smear at 4 weeks for the nebulized rIFN-gamma1b adjuvant group compared to DOTS or DOTS with subcutaneous rIFN-gamma1b. In addition, there was significant reduction in the prevalence of fever, wheeze, and night sweats at 4 weeks among patients receiving rFN-gamma1b versus DOTS alone. CONCLUSION:Recombinant interferon-gamma1b adjuvant therapy plus DOTS in cavitary pulmonary tuberculosis can reduce inflammatory cytokines at the site of disease, improve clearance of Mtb from the sputum, and improve constitutional symptoms. TRIAL REGISTRATION:ClinicalTrials.gov NCT00201123

    Alignment of Synaptic Vesicle Macromolecules with the Macromolecules in Active Zone Material that Direct Vesicle Docking

    Get PDF
    Synaptic vesicles dock at active zones on the presynaptic plasma membrane of a neuron’s axon terminals as a precondition for fusing with the membrane and releasing their neurotransmitter to mediate synaptic impulse transmission. Typically, docked vesicles are next to aggregates of plasma membrane-bound macromolecules called active zone material (AZM). Electron tomography on tissue sections from fixed and stained axon terminals of active and resting frog neuromuscular junctions has led to the conclusion that undocked vesicles are directed to and held at the docking sites by the successive formation of stable connections between vesicle membrane proteins and proteins in different classes of AZM macromolecules. Using the same nanometer scale 3D imaging technology on appropriately stained frog neuromuscular junctions, we found that ∼10% of a vesicle’s luminal volume is occupied by a radial assembly of elongate macromolecules attached by narrow projections, nubs, to the vesicle membrane at ∼25 sites. The assembly’s chiral, bilateral shape is nearly the same vesicle to vesicle, and nubs, at their sites of connection to the vesicle membrane, are linked to macromolecules that span the membrane. For docked vesicles, the orientation of the assembly’s shape relative to the AZM and the presynaptic membrane is the same vesicle to vesicle, whereas for undocked vesicles it is not. The connection sites of most nubs on the membrane of docked vesicles are paired with the connection sites of the different classes of AZM macromolecules that regulate docking, and the membrane spanning macromolecules linked to these nubs are also attached to the AZM macromolecules. We conclude that the luminal assembly of macromolecules anchors in a particular arrangement vesicle membrane macromolecules, which contain the proteins that connect the vesicles to AZM macromolecules during docking. Undocked vesicles must move in a way that aligns this arrangement with the AZM macromolecules for docking to proceed
    corecore