169 research outputs found
Robustness of circadian clocks to daylight fluctuations: hints from the picoeucaryote Ostreococcus tauri
The development of systemic approaches in biology has put emphasis on
identifying genetic modules whose behavior can be modeled accurately so as to
gain insight into their structure and function. However most gene circuits in a
cell are under control of external signals and thus quantitative agreement
between experimental data and a mathematical model is difficult. Circadian
biology has been one notable exception: quantitative models of the internal
clock that orchestrates biological processes over the 24-hour diurnal cycle
have been constructed for a few organisms, from cyanobacteria to plants and
mammals. In most cases, a complex architecture with interlocked feedback loops
has been evidenced. Here we present first modeling results for the circadian
clock of the green unicellular alga Ostreococcus tauri. Two plant-like clock
genes have been shown to play a central role in Ostreococcus clock. We find
that their expression time profiles can be accurately reproduced by a minimal
model of a two-gene transcriptional feedback loop. Remarkably, best adjustment
of data recorded under light/dark alternation is obtained when assuming that
the oscillator is not coupled to the diurnal cycle. This suggests that coupling
to light is confined to specific time intervals and has no dynamical effect
when the oscillator is entrained by the diurnal cycle. This intringuing
property may reflect a strategy to minimize the impact of fluctuations in
daylight intensity on the core circadian oscillator, a type of perturbation
that has been rarely considered when assessing the robustness of circadian
clocks
Natural killer (NK) cells from killers to regulators: Distinct features between peripheral blood and decidual NK cells
Natural killer (NK) cells are a key component of innate immunity, particularly crucial during the early phase of immune responses against certain viruses, parasites, and microbial pathogens. The role of NK cell during pregnancy has been vividly discussed over the past years and it is now becoming increasingly clear that NK cells control pregnancy maintenance at several levels. In normal pregnancy, it appears that they provide benefit by properly secreting cytokines, chemokines and angiogenic factors rather than functioning as cytotoxic effector cells. However, as they are endowed with all the cytolytic weapons, they promptly become capable of attacking fetal and maternal tissues during infection and inflammation. © 2007 The Authors Journal compilation 2007 Blackwell Munksgaard
I Know My Neighbour: Individual Recognition in Octopus vulgaris
Background: Little is known about individual recognition (IR) in octopuses, although they have been abundantly studied for their sophisticated behaviour and learning capacities. Indeed, the ability of octopuses to recognise conspecifics is suggested by a number of clues emerging from both laboratory studies (where they appear to form and maintain dominance hierarchies) and field observations (octopuses of neighbouring dens display little agonism between each other). To fill this gap in knowledge, we investigated the behaviour of 24 size-matched pairs of Octopus vulgaris in laboratory conditions. Methodology/Principal Findings: The experimental design was composed of 3 phases: Phase 1 (acclimatization): 12 ‘‘sightallowed’’ (and 12 ‘‘isolated’’) pairs were maintained for 3 days in contiguous tanks separated by a transparent (and opaque) partition to allow (and block) the vision of the conspecific; Phase 2 (cohabitation): members of each pair (both sight-allowed and isolated) were transferred into an experimental tank and were allowed to interact for 15 min every day for 3 consecutive days; Phase 3 (test): each pair (both sight-allowed and isolated) was subject to a switch of an octopus to form pairs composed of either familiar (‘‘sham switches’’) or unfamiliar conspecifics (‘‘real switches’’). Longer latencies (i.e. the time elapsed from the first interaction) and fewer physical contacts in the familiar pairs as opposed to the unfamiliar pairs were used as proxies for recognition. Conclusions: Octopuses appear able to recognise conspecifics and to remember the individual previously met for at leas
Recognition and Alleviation of Pain in Animals
The pain and distress which animals experience as a consequence of their use by man figures prominently in discussions of animal welfare. Some improvements have been made in animal housing and husbandry practices and it is likely that further progress will be made in this field. In comparison, relatively little attention has been given to the problem of minimizing the pain and distress caused to animals by the various procedures to which they are subjected. The most publicized of these are the wide range of experimental techniques which are undertaken using laboratory animals, but also includes procedures such as castration of farm animals and neutering operations carried out on pet animals. The prevention or alleviation of the pain associated with such procedures is a complex problem with no single, simple solution. Consideration must be given to the use of analgesic drugs, the provision of high standards of general care, and the use of special nursing techniques. When dealing with post-operative care, the pre-operative management ofthe animal, the operative procedures and the anesthetic regime must all be evaluated and, when necessary, modified to minimize pain or discomfort
Genome-wide Meta-analysis Finds the ACSL5-ZDHHC6 Locus Is Associated with ALS and Links Weight Loss to the Disease Genetics
We meta-analyze amyotrophic lateral sclerosis (ALS) genome-wide association study (GWAS) data of European and Chinese populations (84,694 individuals). We find an additional significant association between rs58854276 spanning ACSL5-ZDHHC6 with ALS (p = 8.3 × 10−9), with replication in an independent Australian cohort (1,502 individuals; p = 0.037). Moreover, B4GALNT1, G2E3-SCFD1, and TRIP11-ATXN3 are identified using a gene-based analysis. ACSL5 has been associated with rapid weight loss, as has another ALS-associated gene, GPX3. Weight loss is frequent in ALS patients and is associated with shorter survival. We investigate the effect of the ACSL5 and GPX3 single-nucleotide polymorphisms (SNPs), using longitudinal body composition and weight data of 77 patients and 77 controls. In patients’ fat-free mass, although not significant, we observe an effect in the expected direction (rs58854276: −2.1 ± 1.3 kg/A allele, p = 0.053; rs3828599: −1.0 ± 1.3 kg/A allele, p = 0.22). No effect was observed in controls. Our findings support the increasing interest in lipid metabolism in ALS and link the disease genetics to weight loss in patients
Comparative Influence of Ocean Conditions on Yellowfin and Atlantic Bluefin Tuna Catch from Longlines in the Gulf of Mexico
Directed fishing effort for Atlantic bluefin tuna in the Gulf of Mexico (GOM), their primary spawning grounds in the western Atlantic, has been prohibited since the 1980s due to a precipitous decline of the spawning stock biomass. However, pelagic longlines targeted at other species, primarily yellowfin tuna and swordfish, continue to catch Atlantic bluefin tuna in the GOM as bycatch. Spatial and temporal management measures minimizing bluefin tuna bycatch in the GOM will likely become important in rebuilding the western Atlantic bluefin stock. In order to help inform management policy and understand the relative distribution of target and bycatch species in the GOM, we compared the spatiotemporal variability and environmental influences on the catch per unit effort (CPUE) of yellowfin (target) and bluefin tuna (bycatch). Catch and effort data from pelagic longline fisheries observers (1993–2005) and scientific tagging cruises (1998–2002) were coupled with environmental and biological data. Negative binomial models were used to fit the data for both species and Akaike's Information Criterion (corrected for small sample size) was used to determine the best model. Our results indicate that bluefin CPUE had higher spatiotemporal variability as compared to yellowfin CPUE. Bluefin CPUE increased substantially during the breeding months (March-June) and peaked in April and May, while yellowfin CPUE remained relatively high throughout the year. In addition, bluefin CPUE was significantly higher in areas with negative sea surface height anomalies and cooler sea surface temperatures, which are characteristic of mesoscale cyclonic eddies. In contrast, yellowfin CPUE was less sensitive to environmental variability. These differences in seasonal variability and sensitivity to environmental influences suggest that bluefin tuna bycatch in the GOM can be reduced substantially by managing the spatial and temporal distribution of the pelagic longline effort without substantially impacting yellowfin tuna catches
Broad-Scale Recombination Patterns Underlying Proper Disjunction in Humans
Although recombination is essential to the successful completion of human meiosis, it remains unclear how tightly the process is regulated and over what scale. To assess the nature and stringency of constraints on human recombination, we examined crossover patterns in transmissions to viable, non-trisomic offspring, using dense genotyping data collected in a large set of pedigrees. Our analysis supports a requirement for one chiasma per chromosome rather than per arm to ensure proper disjunction, with additional chiasmata occurring in proportion to physical length. The requirement is not absolute, however, as chromosome 21 seems to be frequently transmitted properly in the absence of a chiasma in females, a finding that raises the possibility of a back-up mechanism aiding in its correct segregation. We also found a set of double crossovers in surprisingly close proximity, as expected from a second pathway that is not subject to crossover interference. These findings point to multiple mechanisms that shape the distribution of crossovers, influencing proper disjunction in humans
Dispersal Routes and Habitat Utilization of Juvenile Atlantic Bluefin Tuna, Thunnus thynnus, Tracked with Mini PSAT and Archival Tags
Between 2005 and 2009, we deployed 58 miniature pop-up satellite archival tags (PSAT) and 132 implanted archival tags on juvenile Atlantic bluefin tuna (age 2–5) in the northwest Atlantic Ocean. Data returned from these efforts (n = 26 PSATs, 1 archival tag) revealed their dispersal routes, horizontal and vertical movements and habitat utilization. All of the tagged bluefin tuna remained in the northwest Atlantic for the duration observed, and in summer months exhibited core-use of coastal seas extending from Maryland to Cape Cod, MA, (USA) out to the shelf break. Their winter distributions were more spatially disaggregated, ranging south to the South Atlantic Bight, northern Bahamas and Gulf Stream. Vertical habitat patterns showed that juvenile bluefin tuna mainly occupied shallow depths (mean  = 5–12 m, sd  = 15–23.7 m) and relatively warm water masses in summer (mean  = 17.9–20.9°C, sd  = 4.2–2.6°C) and had deeper and more variable depth patterns in winter (mean  = 41–58 m, sd  = 48.9–62.2 m). Our tagging results reveal annual dispersal patterns, behavior and oceanographic associations of juvenile Atlantic bluefin tuna that were only surmised in earlier studies. Fishery independent profiling from electronic tagging also provide spatially and temporally explicit information for evaluating dispersals rates, population structure and fisheries catch patterns
A Customer Perspective on Product Eliminations: How the Removal of Products Affects Customers and Business Relationships
Regardless of the apparent need for product
eliminations, many managers hesitate to act as
they fear deleterious effects on customer satisfaction and loyalty. Other managers do
carry out product eliminations, but often fail
to consider the consequences for customers
and business relationships. Given the relevance
and problems of product eliminations, research
on this topic in general and on the
consequences for customers and business
relationships in particular is surprisingly scarce. Therefore, this empirical study explores how and to what extent the elimination of a
product negatively affects customers and
business relationships. Results indicate that
eliminating a product may result in severe
economic and psychological costs to customers,
thereby seriously decreasing customer satisfaction and loyalty. This paper also shows
that these costs are not exogenous in nature. Instead, depending on the characteristics
of the eliminated product these costs are
found to be more or less strongly driven by a
company’s behavior when implementing the
elimination at the customer interface
Green Sturgeon Physical Habitat Use in the Coastal Pacific Ocean
The green sturgeon (Acipenser medirostris) is a highly migratory, oceanic, anadromous species with a complex life history that makes it vulnerable to species-wide threats in both freshwater and at sea. Green sturgeon population declines have preceded legal protection and curtailment of activities in marine environments deemed to increase its extinction risk. Yet, its marine habitat is poorly understood. We built a statistical model to characterize green sturgeon marine habitat using data from a coastal tracking array located along the Siletz Reef near Newport, Oregon, USA that recorded the passage of 37 acoustically tagged green sturgeon. We classified seafloor physical habitat features with high-resolution bathymetric and backscatter data. We then described the distribution of habitat components and their relationship to green sturgeon presence using ordination and subsequently used generalized linear model selection to identify important habitat components. Finally, we summarized depth and temperature recordings from seven green sturgeon present off the Oregon coast that were fitted with pop-off archival geolocation tags. Our analyses indicated that green sturgeon, on average, spent a longer duration in areas with high seafloor complexity, especially where a greater proportion of the substrate consists of boulders. Green sturgeon in marine habitats are primarily found at depths of 20–60 meters and from 9.5–16.0°C. Many sturgeon in this study were likely migrating in a northward direction, moving deeper, and may have been using complex seafloor habitat because it coincides with the distribution of benthic prey taxa or provides refuge from predators. Identifying important green sturgeon marine habitat is an essential step towards accurately defining the conditions that are necessary for its survival and will eventually yield range-wide, spatially explicit predictions of green sturgeon distribution
- …