270 research outputs found
The role of power in financial statement fraud schemes
In this paper, we investigate a large-scale financial statement fraud to better understand the process by which individuals are recruited to participate in financial statement fraud schemes. The case reveals that perpetrators often use power to recruit others to participate in fraudulent acts. To illustrate how power is used, we propose a model, based upon the classical French and Raven taxonomy of power, that explains how one individual influences another individual to participate in financial statement fraud. We also provide propositions for future research
Physiologically Based Pharmacokinetic Modeling of Persistent Organic Pollutants for Lifetime Exposure Assessment: A New Tool in Breast Cancer Epidemiologic Studies
Urban Biodiversity and Landscape Ecology: Patterns, Processes and Planning
Effective planning for biodiversity in cities and towns is increasingly important as urban areas and their human populations grow, both to achieve conservation goals and because ecological communities support services on which humans depend. Landscape ecology provides important frameworks for understanding and conserving urban biodiversity both within cities and considering whole cities in their regional context, and has played an important role in the development of a substantial and expanding body of knowledge about urban landscapes and communities. Characteristics of the whole city including size, overall amount of green space, age and regional context are important considerations for understanding and planning for biotic assemblages at the scale of entire cities, but have received relatively little research attention. Studies of biodiversity within cities are more abundant and show that longstanding principles regarding how patch size, configuration and composition influence biodiversity apply to urban areas as they do in other habitats. However, the fine spatial scales at which urban areas are fragmented and the altered temporal dynamics compared to non-urban areas indicate a need to apply hierarchical multi-scalar landscape ecology models to urban environments. Transferring results from landscape-scale urban biodiversity research into planning remains challenging, not least because of the requirements for urban green space to provide multiple functions. An increasing array of tools is available to meet this challenge and increasingly requires ecologists to work with planners to address biodiversity challenges. Biodiversity conservation and enhancement is just one strand in urban planning, but is increasingly important in a rapidly urbanising world
Drug-microbiota interactions and treatment response: Relevance to rheumatoid arthritis
Knowledge about associations between changes in the structure and/or function of intestinal microbes (the microbiota) and the pathogenesis of various diseases is expanding. However, interactions between the intestinal microbiota and different pharmaceuticals and the impact of these on responses to treatment are less well studied. Several mechanisms are known by which drug-microbiota interactions can influence drug bioavailability, efficacy, and/or toxicity. This includes direct activation or inactivation of drugs by microbial enzymes which can enhance or reduce drug effectiveness. The extensive metabolic capabilities of the intestinal microbiota make it a hotspot for drug modification. However, drugs can also influence the microbiota profoundly and change the outcome of interactions with the host. Additionally, individual microbiota signatures are unique, leading to substantial variation in host responses to particular drugs. In this review, we describe several known and emerging examples of how drug-microbiota interactions influence the responses of patients to treatment for various diseases, including inflammatory bowel disease, type 2 diabetes and cancer. Focussing on rheumatoid arthritis (RA), a chronic inflammatory disease of the joints which has been linked with microbial dysbiosis, we propose mechanisms by which the intestinal microbiota may affect responses to treatment with methotrexate which are highly variable. Furthering our knowledge of this subject will eventually lead to the adoption of new treatment strategies incorporating microbiota signatures to predict or improve treatment outcomes
Dynamic summarization of bibliographic-based data
<p>Abstract</p> <p>Background</p> <p>Traditional information retrieval techniques typically return excessive output when directed at large bibliographic databases. Natural Language Processing applications strive to extract salient content from the excessive data. Semantic MEDLINE, a National Library of Medicine (NLM) natural language processing application, highlights relevant information in PubMed data. However, Semantic MEDLINE implements manually coded schemas, accommodating few information needs. Currently, there are only five such schemas, while many more would be needed to realistically accommodate all potential users. The aim of this project was to develop and evaluate a statistical algorithm that automatically identifies relevant bibliographic data; the new algorithm could be incorporated into a dynamic schema to accommodate various information needs in Semantic MEDLINE, and eliminate the need for multiple schemas.</p> <p>Methods</p> <p>We developed a flexible algorithm named Combo that combines three statistical metrics, the Kullback-Leibler Divergence (KLD), Riloff's RlogF metric (RlogF), and a new metric called PredScal, to automatically identify salient data in bibliographic text. We downloaded citations from a PubMed search query addressing the genetic etiology of bladder cancer. The citations were processed with SemRep, an NLM rule-based application that produces semantic predications. SemRep output was processed by Combo, in addition to the standard Semantic MEDLINE genetics schema and independently by the two individual KLD and RlogF metrics. We evaluated each summarization method using an existing reference standard within the task-based context of genetic database curation.</p> <p>Results</p> <p>Combo asserted 74 genetic entities implicated in bladder cancer development, whereas the traditional schema asserted 10 genetic entities; the KLD and RlogF metrics individually asserted 77 and 69 genetic entities, respectively. Combo achieved 61% recall and 81% precision, with an F-score of 0.69. The traditional schema achieved 23% recall and 100% precision, with an F-score of 0.37. The KLD metric achieved 61% recall, 70% precision, with an F-score of 0.65. The RlogF metric achieved 61% recall, 72% precision, with an F-score of 0.66.</p> <p>Conclusions</p> <p>Semantic MEDLINE summarization using the new Combo algorithm outperformed a conventional summarization schema in a genetic database curation task. It potentially could streamline information acquisition for other needs without having to hand-build multiple saliency schemas.</p
Mitochondrial chaotic dynamics: Redox-energetic behavior at the edge of stability
Mitochondria serve multiple key cellular functions, including energy generation, redox balance, and regulation of apoptotic cell death, thus making a major impact on healthy and diseased states. Increasingly recognized is that biological network stability/instability can play critical roles in determining health and disease. We report for the first-time mitochondrial chaotic dynamics, characterizing the conditions leading from stability to chaos in this organelle. Using an experimentally validated computational model of mitochondrial function, we show that complex oscillatory dynamics in key metabolic variables, arising at the “edge” between fully functional and pathological behavior, sets the stage for chaos. Under these conditions, a mild, regular sinusoidal redox forcing perturbation triggers chaotic dynamics with main signature traits such as sensitivity to initial conditions, positive Lyapunov exponents, and strange attractors. At the “edge” mitochondrial chaos is exquisitely sensitive to the antioxidant capacity of matrix Mn superoxide dismutase as well as to the amplitude and frequency of the redox perturbation. These results have potential implications both for mitochondrial signaling determining health maintenance, and pathological transformation, including abnormal cardiac rhythms.publishedVersionKembro, Jackelyn Melissa. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.Kembro, Jackelyn Melissa. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina.Cortassa, Sonia. National Institutes of Health. NIH · NIA Intramural Research Program; Estados Unidos.Lloyd, David. Cardiff University. School of Biosciences 1; Inglaterra.Sollot, Steven. Johns Hopkins University. Laboratory of Cardiovascular Science; Estados Unidos.Sollot, Steven. Johns Hopkins University. Laboratory of Cardiovascular Science; Estados Unidos
Settling into an Increasingly Hostile World: The Rapidly Closing “Recruitment Window” for Corals
Free space is necessary for larval recruitment in all marine benthic communities. Settling corals, with limited energy to invest in competitive interactions, are particularly vulnerable during settlement into well-developed coral reef communities. This situation may be exacerbated for corals settling into coral-depauperate reefs where succession in nursery microhabitats moves rapidly toward heterotrophic organisms inhospitable to settling corals. To study effects of benthic organisms (at millimeter to centimeter scales) on newly settled corals and their survivorship we deployed terra-cotta coral settlement plates at 10 m depth on the Mesoamerican Barrier Reef in Belize and monitored them for 38 mo. During the second and third years, annual recruitment rates declined by over 50% from the previous year. Invertebrate crusts (primarily sponges) were absent at the start of the experiment but increased in abundance annually from 39, 60, to 73% of the plate undersides by year three. Subsequently, substrates hospitable to coral recruitment, including crustose coralline algae, biofilmed terra-cotta and polychaete tubes, declined. With succession, substrates upon which spat settled shifted toward organisms inimical to survivorship. Over 50% of spat mortality was due to overgrowth by sponges alone. This result suggests that when a disturbance creates primary substrate a “recruitment window” for settling corals exists from approximately 9 to 14 mo following the disturbance. During the window, early-succession, facilitating species are most abundant. The window closes as organisms hostile to coral settlement and survivorship overgrow nursery microhabitats
Poorly controlled type 2 diabetes is accompanied by significant morphological and ultrastructural changes in both erythrocytes and in thrombin-generated fibrin: implications for diagnostics
We have noted in previous work, in a variety of inflammatory diseases, where iron dysregulation occurs, a strong
tendency for erythrocytes to lose their normal discoid shape and to adopt a skewed morphology (as judged by
their axial ratios in the light microscope and by their ultrastructure in the SEM). Similarly, the polymerization of
fibrinogen, as induced in vitro by added thrombin, leads not to the common ‘spaghetti-like’ structures but to dense
matted deposits. Type 2 diabetes is a known inflammatory disease. In the present work, we found that the axial
ratio of the erythrocytes of poorly controlled (as suggested by increased HbA1c levels) type 2 diabetics was
significantly increased, and that their fibrin morphologies were again highly aberrant. As judged by scanning
electron microscopy and in the atomic force microscope, these could be reversed, to some degree, by the addition
of the iron chelators deferoxamine (DFO) or deferasirox (DFX). As well as their demonstrated diagnostic significance,
these morphological indicators may have prognostic value.Biotechnology and Biological Sciences Research Council (grant
BB/L025752/1) as well as the National Research Foundation (NRF) of South
Africa.http://www.cardiab.com/hb201
Gene Discovery in the Threatened Elkhorn Coral: 454 Sequencing of the Acropora palmata Transcriptome
BACKGROUND: Cnidarians, including corals and anemones, offer unique insights into metazoan evolution because they harbor genetic similarities with vertebrates beyond that found in model invertebrates and retain genes known only from non-metazoans. Cataloging genes expressed in Acropora palmata, a foundation-species of reefs in the Caribbean and western Atlantic, will advance our understanding of the genetic basis of ecologically important traits in corals and comes at a time when sequencing efforts in other cnidarians allow for multi-species comparisons. RESULTS: A cDNA library from a sample enriched for symbiont free larval tissue was sequenced on the 454 GS-FLX platform. Over 960,000 reads were obtained and assembled into 42,630 contigs. Annotation data was acquired for 57% of the assembled sequences. Analysis of the assembled sequences indicated that 83-100% of all A. palmata transcripts were tagged, and provided a rough estimate of the total number genes expressed in our samples (~18,000-20,000). The coral annotation data contained many of the same molecular components as in the Bilateria, particularly in pathways associated with oxidative stress and DNA damage repair, and provided evidence that homologs of p53, a key player in DNA repair pathways, has experienced selection along the branch separating Cnidaria and Bilateria. Transcriptome wide screens of paralog groups and transition/transversion ratios highlighted genes including: green fluorescent proteins, carbonic anhydrase, and oxidative stress proteins; and functional groups involved in protein and nucleic acid metabolism, and the formation of structural molecules. These results provide a starting point for study of adaptive evolution in corals. CONCLUSIONS: Currently available transcriptome data now make comparative studies of the mechanisms underlying coral's evolutionary success possible. Here we identified candidate genes that enable corals to maintain genomic integrity despite considerable exposure to genotoxic stress over long life spans, and showed conservation of important physiological pathways between corals and bilaterians
Polygenic risk scores for prediction of breast cancer risk in Asian populations.
PURPOSE: Non-European populations are under-represented in genetics studies, hindering clinical implementation of breast cancer polygenic risk scores (PRSs). We aimed to develop PRSs using the largest available studies of Asian ancestry and to assess the transferability of PRS across ethnic subgroups. METHODS: The development data set comprised 138,309 women from 17 case-control studies. PRSs were generated using a clumping and thresholding method, lasso penalized regression, an Empirical Bayes approach, a Bayesian polygenic prediction approach, or linear combinations of multiple PRSs. These PRSs were evaluated in 89,898 women from 3 prospective studies (1592 incident cases). RESULTS: The best performing PRS (genome-wide set of single-nucleotide variations [formerly single-nucleotide polymorphism]) had a hazard ratio per unit SD of 1.62 (95% CI = 1.46-1.80) and an area under the receiver operating curve of 0.635 (95% CI = 0.622-0.649). Combined Asian and European PRSs (333 single-nucleotide variations) had a hazard ratio per SD of 1.53 (95% CI = 1.37-1.71) and an area under the receiver operating curve of 0.621 (95% CI = 0.608-0.635). The distribution of the latter PRS was different across ethnic subgroups, confirming the importance of population-specific calibration for valid estimation of breast cancer risk. CONCLUSION: PRSs developed in this study, from association data from multiple ancestries, can enhance risk stratification for women of Asian ancestry
- …
