449 research outputs found

    A Saprolegnia parasitica challenge system for rainbow trout: assessment of Pyceze as an anti-fungal agent for both fish and ova

    Get PDF
    A reproducible Saprolegnia parasitica spore delivery system was developed and demonstrated to be effective in providing a sustained spore challenge for up to 10 days. Treatment of rainbow trout with slow-release intraperitoneal implants containing cortisol resulted in chronically elevated blood cortisol levels and rendered the fish susceptible to infection by S. parasitica when exposed to the spore challenge. Sham-implanted fish were not susceptible to infection. Bronopol (2-bromo-2-nitropropane-1,3-diol), formulated as Pyceze, was effective in protecting predisposed fish from infection by S. parasitica when administered as a daily bath/flush treatment at concentrations of 15 mg l-1 and greater. Pyceze was also demonstrated to protect fertilised rainbow trout ova from S. parasitica challenge when administered as a daily bath/flush treatment at concentrations of between 30 and 100 mg l-1. Pyceze appears to qualify as a safe and effective replacement for malachite green and formalin in the prevention of fungal infections in the aquaculture environment

    Superfluidity of a perfect quantum crystal

    Full text link
    In recent years, experimental data were published which point to the possibility of the existence of superfluidity in solid helium. To investigate this phenomenon theoretically we employ a hierarchy of equations for reduced density matrices which describes a quantum system that is in thermodynamic equilibrium below the Bose-Einstein condensation point, the hierarchy being obtained earlier by the author. It is shown that the hierarchy admits solutions relevant to a perfect crystal (immobile) in which there is a frictionless flow of atoms, which testifies to the possibility of superfluidity in ideal solids. The solutions are studied with the help of the bifurcation method and some their peculiarities are found out. Various physical aspects of the problem, among them experimental ones, are discussed as well.Comment: 24 pages with 2 figures, version accepted for publication in Eur.Phys.J.

    Effects of cryopreservation on viability and functional stability of an industrially relevant alga

    Get PDF
    As algal biotechnology develops, there is an increasing requirement to conserve cultures without the cost, time and genetic stability implications of conventional serial transfers, including issues regarding potential loss by failure to regrow, contamination on transfer, mix up and/or errors in the documentation on transfer. Furthermore, it is crucial to ensure both viability and functionality are retained by stored stock-cultures. Low temperature storage, ranging from the use of domestic freezers to storage under liquid nitrogen, is widely being used, but the implication to stability and function rarely investigated. We report for the first time, retention of functionality in the maintenance of master stock-cultures of an industrially relevant, lipid-producing alga, under a variety of cryopreservation regimes. Storage in domestic (−15 °C), or conventional −80 °C freezers was suboptimal, with a rapid reduction in viability observed for samples at −15 °C and a >50% loss of viability, within one month, for samples stored at −80 °C. No reduction in viability occurred at −196 °C. Post-thaw culture functional performance was also influenced by the cryopreservation approach employed. Only samples held at −196 °C responded to nitrogen limitation in terms of growth characteristics and biochemical profiles (lipid production and chlorophyll a) comparable to the untreated control, cultured prior to cryopreservation. These results have important implications in microbial biotechnology, especially for those responsible for the conservation of genetic resources

    Dynamics of Simple Balancing Models with State Dependent Switching Control

    Full text link
    Time-delayed control in a balancing problem may be a nonsmooth function for a variety of reasons. In this paper we study a simple model of the control of an inverted pendulum by either a connected movable cart or an applied torque for which the control is turned off when the pendulum is located within certain regions of phase space. Without applying a small angle approximation for deviations about the vertical position, we see structurally stable periodic orbits which may be attracting or repelling. Due to the nonsmooth nature of the control, these periodic orbits are born in various discontinuity-induced bifurcations. Also we show that a coincidence of switching events can produce complicated periodic and aperiodic solutions.Comment: 36 pages, 12 figure

    Triple oxygen isotopic composition of the high-<sup>3</sup>He/<sup>4</sup>He mantle

    Get PDF
    Measurements of Xe isotope ratios in ocean island basalts (OIB) suggest that Earth’s mantle accreted heterogeneously, and that compositional remnants of accretion are sampled by modern, high-3He/4He OIB associated with the Icelandic and Samoan plumes. If so, the high-3He/4He source may also have a distinct oxygen isotopic composition from the rest of the mantle. Here, we test if the major elements of the high-3He/4He source preserve any evidence of heterogeneous accretion using measurements of three oxygen isotopes on olivine from a variety of high-3He/4He OIB locations. To high precision, the Δ17O value of high-3He/4He olivines from Hawaii, Pitcairn, Baffin Island and Samoa, are indistinguishable from bulk mantle olivine (Δ17OBulk Mantle − Δ17OHigh 3He/4He olivine = −0.002 ± 0.004 (2 × SEM)‰). Thus, there is no resolvable oxygen isotope evidence for heterogeneous accretion in the high-3He/4He source. Modelling of mixing processes indicates that if an early-forming, oxygen-isotope distinct mantle did exist, either the anomaly was extremely small, or the anomaly was homogenised away by later mantle convection. The δ18O values of olivine with the highest 3He/4He ratios from a variety of OIB locations have a relatively uniform composition (∼5‰). This composition is intermediate to values associated with the depleted MORB mantle and the average mantle. Similarly, δ18O values of olivine from high-3He/4He OIB correlate with radiogenic isotope ratios of He, Sr, and Nd. Combined, this suggests that magmatic oxygen is sourced from the same mantle as other, more incompatible elements and that the intermediate δ18O value is a feature of the high-3He/4He mantle source. The processes responsible for the δ18O signature of high-3He/4He mantle are not certain, but δ18O–87Sr/86Sr correlations indicate that it may be connected to a predominance of a HIMU-like (high U/Pb) component or other moderate δ18O components recycled into the high-3He/4He source

    Realistic Model of the Nucleon Spectral Function in Few- and Many- Nucleon Systems

    Get PDF
    By analysing the high momentum features of the nucleon momentum distribution in light and complex nuclei, it is argued that the basic two-nucleon configurations generating the structure of the nucleon Spectral Function at high values of the nucleon momentum and removal energy, can be properly described by a factorised ansatz for the nuclear wave function, which leads to a nucleon Spectral Function in the form of a convolution integral involving the momentum distributions describing the relative and center-of-mass motion of a correlated nucleon-nucleon pair embedded in the medium. The Spectral Functions of 3He^3He and infinite nuclear matter resulting from the convolution formula and from many-body calculations are compared, and a very good agreement in a wide range of values of nucleon momentum and removal energy is found. Applications of the model to the analysis of inclusive and exclusive processes are presented, illustrating those features of the cross section which are sensitive to that part of the Spectral Function which is governed by short-range and tensor nucleon-nucleon correlations.Comment: 40 pages Latex , 16 ps figures available from the above e-mail address or from [email protected]

    Defects and glassy dynamics in solid He-4: Perspectives and current status

    Full text link
    We review the anomalous behavior of solid He-4 at low temperatures with particular attention to the role of structural defects present in solid. The discussion centers around the possible role of two level systems and structural glassy components for inducing the observed anomalies. We propose that the origin of glassy behavior is due to the dynamics of defects like dislocations formed in He-4. Within the developed framework of glassy components in a solid, we give a summary of the results and predictions for the effects that cover the mechanical, thermodynamic, viscoelastic, and electro-elastic contributions of the glassy response of solid He-4. Our proposed glass model for solid He-4 has several implications: (1) The anomalous properties of He-4 can be accounted for by allowing defects to freeze out at lowest temperatures. The dynamics of solid He-4 is governed by glasslike (glassy) relaxation processes and the distribution of relaxation times varies significantly between different torsional oscillator, shear modulus, and dielectric function experiments. (2) Any defect freeze-out will be accompanied by thermodynamic signatures consistent with entropy contributions from defects. It follows that such entropy contribution is much smaller than the required superfluid fraction, yet it is sufficient to account for excess entropy at lowest temperatures. (3) We predict a Cole-Cole type relation between the real and imaginary part of the response functions for rotational and planar shear that is occurring due to the dynamics of defects. Similar results apply for other response functions. (4) Using the framework of glassy dynamics, we predict low-frequency yet to be measured electro-elastic features in defect rich He-4 crystals. These predictions allow one to directly test the ideas and very presence of glassy contributions in He-4.Comment: 33 pages, 13 figure

    Lifetime distributions in the methods of non-equilibrium statistical operator and superstatistics

    Full text link
    A family of non-equilibrium statistical operators is introduced which differ by the system age distribution over which the quasi-equilibrium (relevant) distribution is averaged. To describe the nonequilibrium states of a system we introduce a new thermodynamic parameter - the lifetime of a system. Superstatistics, introduced in works of Beck and Cohen [Physica A \textbf{322}, (2003), 267] as fluctuating quantities of intensive thermodynamical parameters, are obtained from the statistical distribution of lifetime (random time to the system degeneracy) considered as a thermodynamical parameter. It is suggested to set the mixing distribution of the fluctuating parameter in the superstatistics theory in the form of the piecewise continuous functions. The distribution of lifetime in such systems has different form on the different stages of evolution of the system. The account of the past stages of the evolution of a system can have a substantial impact on the non-equilibrium behaviour of the system in a present time moment.Comment: 18 page
    corecore