449 research outputs found
A Saprolegnia parasitica challenge system for rainbow trout: assessment of Pyceze as an anti-fungal agent for both fish and ova
A reproducible Saprolegnia parasitica spore delivery system was developed and demonstrated to be effective in providing a sustained spore challenge for up to 10 days. Treatment of rainbow trout with slow-release intraperitoneal implants containing cortisol resulted in chronically elevated blood cortisol levels and rendered the fish susceptible to infection by S. parasitica when exposed to the spore challenge. Sham-implanted fish were not susceptible to infection. Bronopol (2-bromo-2-nitropropane-1,3-diol), formulated as Pyceze, was effective in protecting predisposed fish from infection by S. parasitica when administered as a daily bath/flush treatment at concentrations of 15 mg l-1 and greater. Pyceze was also demonstrated to protect fertilised rainbow trout ova from S. parasitica challenge when administered as a daily bath/flush treatment at concentrations of between 30 and 100 mg l-1. Pyceze appears to qualify as a safe and effective replacement for malachite green and formalin in the prevention of fungal infections in the aquaculture environment
The CCAP knowledgebase:Linking protistan and cyanobacterial biological resources with taxonomic and molecular data
Peer reviewedPublisher PD
Superfluidity of a perfect quantum crystal
In recent years, experimental data were published which point to the
possibility of the existence of superfluidity in solid helium. To investigate
this phenomenon theoretically we employ a hierarchy of equations for reduced
density matrices which describes a quantum system that is in thermodynamic
equilibrium below the Bose-Einstein condensation point, the hierarchy being
obtained earlier by the author. It is shown that the hierarchy admits solutions
relevant to a perfect crystal (immobile) in which there is a frictionless flow
of atoms, which testifies to the possibility of superfluidity in ideal solids.
The solutions are studied with the help of the bifurcation method and some
their peculiarities are found out. Various physical aspects of the problem,
among them experimental ones, are discussed as well.Comment: 24 pages with 2 figures, version accepted for publication in
Eur.Phys.J.
Effects of cryopreservation on viability and functional stability of an industrially relevant alga
As algal biotechnology develops, there is an increasing requirement to conserve cultures without the cost, time and genetic stability implications of conventional serial transfers, including issues regarding potential loss by failure to regrow, contamination on transfer, mix up and/or errors in the documentation on transfer. Furthermore, it is crucial to ensure both viability and functionality are retained by stored stock-cultures. Low temperature storage, ranging from the use of domestic freezers to storage under liquid nitrogen, is widely being used, but the implication to stability and function rarely investigated. We report for the first time, retention of functionality in the maintenance of master stock-cultures of an industrially relevant, lipid-producing alga, under a variety of cryopreservation regimes. Storage in domestic (−15 °C), or conventional −80 °C freezers was suboptimal, with a rapid reduction in viability observed for samples at −15 °C and a >50% loss of viability, within one month, for samples stored at −80 °C. No reduction in viability occurred at −196 °C. Post-thaw culture functional performance was also influenced by the cryopreservation approach employed. Only samples held at −196 °C responded to nitrogen limitation in terms of growth characteristics and biochemical profiles (lipid production and chlorophyll a) comparable to the untreated control, cultured prior to cryopreservation. These results have important implications in microbial biotechnology, especially for those responsible for the conservation of genetic resources
Dynamics of Simple Balancing Models with State Dependent Switching Control
Time-delayed control in a balancing problem may be a nonsmooth function for a
variety of reasons. In this paper we study a simple model of the control of an
inverted pendulum by either a connected movable cart or an applied torque for
which the control is turned off when the pendulum is located within certain
regions of phase space. Without applying a small angle approximation for
deviations about the vertical position, we see structurally stable periodic
orbits which may be attracting or repelling. Due to the nonsmooth nature of the
control, these periodic orbits are born in various discontinuity-induced
bifurcations. Also we show that a coincidence of switching events can produce
complicated periodic and aperiodic solutions.Comment: 36 pages, 12 figure
Triple oxygen isotopic composition of the high-<sup>3</sup>He/<sup>4</sup>He mantle
Measurements of Xe isotope ratios in ocean island basalts (OIB) suggest that Earth’s mantle accreted heterogeneously, and that compositional remnants of accretion are sampled by modern, high-3He/4He OIB associated with the Icelandic and Samoan plumes. If so, the high-3He/4He source may also have a distinct oxygen isotopic composition from the rest of the mantle. Here, we test if the major elements of the high-3He/4He source preserve any evidence of heterogeneous accretion using measurements of three oxygen isotopes on olivine from a variety of high-3He/4He OIB locations. To high precision, the Δ17O value of high-3He/4He olivines from Hawaii, Pitcairn, Baffin Island and Samoa, are indistinguishable from bulk mantle olivine (Δ17OBulk Mantle − Δ17OHigh 3He/4He olivine = −0.002 ± 0.004 (2 × SEM)‰). Thus, there is no resolvable oxygen isotope evidence for heterogeneous accretion in the high-3He/4He source. Modelling of mixing processes indicates that if an early-forming, oxygen-isotope distinct mantle did exist, either the anomaly was extremely small, or the anomaly was homogenised away by later mantle convection.
The δ18O values of olivine with the highest 3He/4He ratios from a variety of OIB locations have a relatively uniform composition (∼5‰). This composition is intermediate to values associated with the depleted MORB mantle and the average mantle. Similarly, δ18O values of olivine from high-3He/4He OIB correlate with radiogenic isotope ratios of He, Sr, and Nd. Combined, this suggests that magmatic oxygen is sourced from the same mantle as other, more incompatible elements and that the intermediate δ18O value is a feature of the high-3He/4He mantle source. The processes responsible for the δ18O signature of high-3He/4He mantle are not certain, but δ18O–87Sr/86Sr correlations indicate that it may be connected to a predominance of a HIMU-like (high U/Pb) component or other moderate δ18O components recycled into the high-3He/4He source
Realistic Model of the Nucleon Spectral Function in Few- and Many- Nucleon Systems
By analysing the high momentum features of the nucleon momentum distribution
in light and complex nuclei, it is argued that the basic two-nucleon
configurations generating the structure of the nucleon Spectral Function at
high values of the nucleon momentum and removal energy, can be properly
described by a factorised ansatz for the nuclear wave function, which leads to
a nucleon Spectral Function in the form of a convolution integral involving the
momentum distributions describing the relative and center-of-mass motion of a
correlated nucleon-nucleon pair embedded in the medium. The Spectral Functions
of and infinite nuclear matter resulting from the convolution formula
and from many-body calculations are compared, and a very good agreement in a
wide range of values of nucleon momentum and removal energy is found.
Applications of the model to the analysis of inclusive and exclusive processes
are presented, illustrating those features of the cross section which are
sensitive to that part of the Spectral Function which is governed by
short-range and tensor nucleon-nucleon correlations.Comment: 40 pages Latex , 16 ps figures available from the above e-mail
address or from [email protected]
Defects and glassy dynamics in solid He-4: Perspectives and current status
We review the anomalous behavior of solid He-4 at low temperatures with
particular attention to the role of structural defects present in solid. The
discussion centers around the possible role of two level systems and structural
glassy components for inducing the observed anomalies. We propose that the
origin of glassy behavior is due to the dynamics of defects like dislocations
formed in He-4. Within the developed framework of glassy components in a solid,
we give a summary of the results and predictions for the effects that cover the
mechanical, thermodynamic, viscoelastic, and electro-elastic contributions of
the glassy response of solid He-4. Our proposed glass model for solid He-4 has
several implications: (1) The anomalous properties of He-4 can be accounted for
by allowing defects to freeze out at lowest temperatures. The dynamics of solid
He-4 is governed by glasslike (glassy) relaxation processes and the
distribution of relaxation times varies significantly between different
torsional oscillator, shear modulus, and dielectric function experiments. (2)
Any defect freeze-out will be accompanied by thermodynamic signatures
consistent with entropy contributions from defects. It follows that such
entropy contribution is much smaller than the required superfluid fraction, yet
it is sufficient to account for excess entropy at lowest temperatures. (3) We
predict a Cole-Cole type relation between the real and imaginary part of the
response functions for rotational and planar shear that is occurring due to the
dynamics of defects. Similar results apply for other response functions. (4)
Using the framework of glassy dynamics, we predict low-frequency yet to be
measured electro-elastic features in defect rich He-4 crystals. These
predictions allow one to directly test the ideas and very presence of glassy
contributions in He-4.Comment: 33 pages, 13 figure
Lifetime distributions in the methods of non-equilibrium statistical operator and superstatistics
A family of non-equilibrium statistical operators is introduced which differ
by the system age distribution over which the quasi-equilibrium (relevant)
distribution is averaged. To describe the nonequilibrium states of a system we
introduce a new thermodynamic parameter - the lifetime of a system.
Superstatistics, introduced in works of Beck and Cohen [Physica A \textbf{322},
(2003), 267] as fluctuating quantities of intensive thermodynamical parameters,
are obtained from the statistical distribution of lifetime (random time to the
system degeneracy) considered as a thermodynamical parameter. It is suggested
to set the mixing distribution of the fluctuating parameter in the
superstatistics theory in the form of the piecewise continuous functions. The
distribution of lifetime in such systems has different form on the different
stages of evolution of the system. The account of the past stages of the
evolution of a system can have a substantial impact on the non-equilibrium
behaviour of the system in a present time moment.Comment: 18 page
- …