49,300 research outputs found
Quantum Determinism from Quantum General Covariance
The requirement of general covariance of quantum field theory (QFT) naturally
leads to quantization based on the manifestly covariant De Donder-Weyl
formalism. To recover the standard noncovariant formalism without violating
covariance, fields need to depend on time in a specific deterministic manner.
This deterministic evolution of quantum fields is recognized as a covariant
version of the Bohmian hidden-variable interpretation of QFT.Comment: 6 pages, revised, new references, Honorable Mention of the Gravity
Research Foundation 2006 Essay Competition, version to appear in Int. J. Mod.
Phys.
BiSON data preparation: A correction for differential extinction and the weighted averaging of contemporaneous data
The Birmingham Solar Oscillations Network (BiSON) has provided high-quality
high-cadence observations from as far back in time as 1978. These data must be
calibrated from the raw observations into radial velocity and the quality of
the calibration has a large impact on the signal-to-noise ratio of the final
time series. The aim of this work is to maximise the potential science that can
be performed with the BiSON data set by optimising the calibration procedure.
To achieve better levels of signal-to-noise ratio we perform two key steps in
the calibration process: we attempt a correction for terrestrial atmospheric
differential extinction; and the resulting improvement in the calibration
allows us to perform weighted averaging of contemporaneous data from different
BiSON stations. The improvements listed produce significant improvement in the
signal-to-noise ratio of the BiSON frequency-power spectrum across all
frequency ranges. The reduction of noise in the power spectrum will allow
future work to provide greater constraint on changes in the oscillation
spectrum with solar activity. In addition, the analysis of the low-frequency
region suggests we have achieved a noise level that may allow us to improve
estimates of the upper limit of g-mode amplitudes.Comment: Accepted for publication in MNRAS; 10 pages, 7 figure
Self-consistent equilibrium of a two-dimensional electron system with a reservoir in a quantizing magnetic field: Analytical approach
An analytical approach has been developed to describe grand canonical
equilibrium between a three dimensional (3D) electron system and a two
dimensional (2D) one, an energy of which is determined self-consistently with
an electron concentration. Main attention is paid to a Landau level (LL)
pinning effect. Pinning means a fixation of the LL on a common Fermi level of
the 2D and the 3D systems in a finite range of the magnetic field due to an
electron transfer from the 2D to the 3D system. A condition and a start of LL
pinning has been found for homogeneously broadened LLs. The electronic transfer
from the 3D to the 2D system controls an extremely sharp magnetic dependency of
an energy of the upper filled LL at integer filling of the LLs. This can cause
a significant increase of inhomogeneous broadening of the upper LL that was
observed in recent local probe experiments.Comment: 12 pages, 2 figures, revtex
The most massive galaxies in clusters are already fully grown at
By constructing scaling relations for galaxies in the massive cluster
MACSJ0717.5 at and comparing with those of Coma, we model the
luminosity evolution of the stellar populations and the structural evolution of
the galaxies. We calculate magnitudes, surface brightnesses and effective radii
using HST/ACS images and velocity dispersions using Gemini/GMOS spectra, and
present a catalogue of our measurements for 17 galaxies. We also generate
photometric catalogues for galaxies from the HST imaging. With
these, we construct the colour-magnitude relation, the fundamental plane, the
mass-to-light versus mass relation, the mass-size relation and the
mass-velocity dispersion relation for both clusters. We present a new, coherent
way of modelling these scaling relations simultaneously using a simple physical
model in order to infer the evolution in luminosity, size and velocity
dispersion as a function of redshift, and show that the data can be fully
accounted for with this model. We find that (a) the evolution in size and
velocity dispersion undergone by these galaxies between and is mild, with and , and (b) the stellar populations are old, Gyr,
with a Gyr dispersion in age, and are consistent with evolving purely
passively since with . The implication is that these galaxies formed their stars early and
subsequently grew dissipationlessly so as to have their mass already in place
by , and suggests a dominant role for dry mergers, which may have
accelerated the growth in these high-density cluster environments.Comment: 20 pages; accepted for publication in MNRA
Cloning, purification and characterization of the 6-phospho-3-hexulose isomerase YckF from Bacillus subtilis
The enzyme 6-phospho-3-hexulose isomerase (YckF) from Bacillus subtilis has been prepared and crystallized in a form suitable for X-ray crystallographic analysis. Crystals were grown by the hanging-drop method at 291 K using polyethylene glycol 2000 monomethylether as precipitant. They diffract beyond 1.7 A using an in-house Cu Kalpha source and belong to either space group P6(5)22 or P6(1)22, with unit-cell parameters a = b = 72.4, c = 241.2 A, and have two molecules of YckF in the asymmetric unit
Knowledge tree: Putting discourse into computer‐based learning
Most CBL materials currently in use model only the declarative aspects of the learning process. If such courseware is used without careful planning, this can be dangerous because one of the most fundamental aspects of education is the dialogue that occurs between teachers and the students. Traditionally, this has taken place in informal discussions as well as in formal small‐group learning sessions such as the conventional tutorial. However, as the student‐staff ratio increases, so does the opportunity for this type of personal dialogue decrease. Modern networking technology offers a huge potential to add discourse to CBL, but there are many pedagogical problems involved with the intrinsically ephemeral and anarchic nature both of the Internet and of most conferencing or bulletin‐board systems. In this paper we describe a software system called Knowledge Tree (KT) which we have developed to address some of these issues. KT combines a hierarchical concept‐oriented database functionality with that of a Usenet‐style bulletin board Using this, a knowledge garden may be developed for any subject area. These each contain a hypermedia database of frequently asked questions, together with answers provided by subject experts. There is provision for inter‐student discussions of problems and issues. When students ask new questions these are automatically emailed to a relevant subject expert (determined by a subject‐specific concept thesaurus). The answer is then placed in the database which eventually grows to become a valuable teaching resource. KT is discipline‐independent as the concept thesaurus can be changed to encapsulate any domain of knowledge. We have used it in support of conventional lecture courses, as an important component of a multimedia course, and for general IT support. These examples illustrate the role that this system can play both in basic information provision, and in facilitating the discussion of deep issues
A model for single electron decays from a strongly isolated quantum dot
Recent measurements of electron escape from a non-equilibrium charged quantum
dot are interpreted within a 2D separable model. The confining potential is
derived from 3D self-consistent Poisson-Thomas-Fermi calculations. It is found
that the sequence of decay lifetimes provides a sensitive test of the confining
potential and its dependence on electron occupation.Comment: 9 pages, 10 figure
The Energy-Momentum Tensor in Fulling-Rindler Vacuum
The energy density in Fulling-Rindler vacuum, which is known to be negative
"everywhere" is shown to be positive and singular on the horizons in such a
fashion as to guarantee the positivity of the total energy. The mechanism of
compensation is displayed in detail.Comment: 9 pages, ULB-TH-15/9
Gravitational Entropy and Quantum Cosmology
We investigate the evolution of different measures of ``Gravitational
Entropy'' in Bianchi type I and Lema\^itre-Tolman universe models.
A new quantity behaving in accordance with the second law of thermodynamics
is introduced. We then go on and investigate whether a quantum calculation of
initial conditions for the universe based upon the Wheeler-DeWitt equation
supports Penrose's Weyl Curvature Conjecture, according to which the Ricci part
of the curvature dominates over the Weyl part at the initial singularity of the
universe. The theory is applied to the Bianchi type I universe models with dust
and a cosmological constant and to the Lema\^itre-Tolman universe models. We
investigate two different versions of the conjecture. First we investigate a
local version which fails to support the conjecture. Thereafter we construct a
non-local entity which shows more promising behaviour concerning the
conjecture.Comment: 20 pages, 7 ps figure
Performance of the Birmingham Solar-Oscillations Network (BiSON)
The Birmingham Solar-Oscillations Network (BiSON) has been operating with a
full complement of six stations since 1992. Over 20 years later, we look back
on the network history. The meta-data from the sites have been analysed to
assess performance in terms of site insolation, with a brief look at the
challenges that have been encountered over the years. We explain how the
international community can gain easy access to the ever-growing dataset
produced by the network, and finally look to the future of the network and the
potential impact of nearly 25 years of technology miniaturisation.Comment: 31 pages, 19 figures. Accepted by Solar Physics: 2015 October 20.
First online: 2015 December 7. Open Acces
- …