11 research outputs found

    Ligand Activation of TAM Family Receptors-Implications for Tumor Biology and Therapeutic Response

    Full text link
    The TAM family of receptors (i.e., Tyro3, Axl, and Mertk), and their ligands Growth arrest specific factor 6 (Gas6) and Protein S (Pros1) contribute to several oncogenic processes, such as cell survival, invasion, migration, chemo-resistance, and metastasis, whereby expression often correlates with poor clinical outcomes. In recent years, there has been great interest in the study of TAM receptors in cancer, stemming both from their roles as oncogenic signaling receptors, as well as their roles in tumor immunology. As a result, several classes of TAM inhibitors that include small molecule tyrosine kinase inhibitors, monoclonal antibodies, decoy receptors, as well as novel strategies to target TAM ligands are being developed. This paper will review the biology of TAM receptors and their ligands with a focus on cancer, as well as evidence-based data for the continued pursuit of TAM/Gas6 inhibitors in clinical practice

    Phosphatidylserine externalization by apoptotic cells is dispensable for specific recognition leading to innate apoptotic immune responses

    Full text link
    Surface determinants newly expressed by apoptotic cells that are involved in triggering potent immunosuppressive responses, referred to as "innate apoptotic immunity (IAI)" have not been characterized fully. It is widely assumed, often implicitly, that phosphatidylserine, a phospholipid normally cloistered in the inner leaflet of cells and externalized specifically during apoptosis, is involved in triggering IAI, just as it plays an essential role in the phagocytic recognition of apoptotic cells. It is notable, however, that the triggering of IAI in responder cells is not dependent on the engulfment of apoptotic cells by those responders. Contact between the responder and the apoptotic target, on the other hand, is necessary to elicit IAI. Previously, we demonstrated that exposure of protease-sensitive determinants on the apoptotic cell surface are essential for initiating IAI responses; exposed glycolytic enzyme molecules were implicated in particular. Here, we report our analysis of the involvement of externalized phosphatidylserine in triggering IAI. To analyze the role of phosphatidylserine, we employed a panel of target cells that either externalized phosphatidylserine constitutively, independently of apoptosis, or did not, as well as their WT parental cells that externalized the phospholipid in an apoptosis-dependent manner. We found that the externalization of phosphatidylserine, which can be fully uncoupled from apoptosis, is neither sufficient nor necessary to trigger the profound immunomodulatory effects of IAI. These results reinforce the view that apoptotic immunomodulation and phagocytosis are dissociable and further underscore the significance of protein determinants localized to the cell surface during apoptosis in triggering innate apoptotic immunity

    Regulation of Mertk Surface Expression via ADAM17 and Îł-Secretase Proteolytic Processing

    Full text link
    Mertk, a type I receptor tyrosine kinase and member of the TAM family of receptors, has important functions in promoting efferocytosis and resolving inflammation under physiological conditions. In recent years, Mertk has also been linked to pathophysiological roles in cancer, whereby, in several cancer types, including solid cancers and leukemia/lymphomas. Mertk contributes to oncogenic features of proliferation and cell survival as an oncogenic tyrosine kinase. In addition, Mertk expressed on macrophages, including tumor-associated macrophages, promotes immune evasion in cancer and is suggested to act akin to a myeloid checkpoint inhibitor that skews macrophages towards inhibitory phenotypes that suppress host T-cell anti-tumor immunity. In the present study, to better understand the post-translational regulation mechanisms controlling Mertk expression in monocytes/macrophages, we used a PMA-differentiated THP-1 cell model to interrogate the regulation of Mertk expression and developed a novel Mertk reporter cell line to study the intracellular trafficking of Mertk. We show that PMA treatment potently up-regulates Mertk as well as components of the ectodomain proteolytic processing platform ADAM17, whereas PMA differentially regulates the canonical Mertk ligands Gas6 and Pros1 (Gas6 is down-regulated and Pros1 is up-regulated). Under non-stimulated homeostatic conditions, Mertk in PMA-differentiated THP1 cells shows active constitutive proteolytic cleavage by the sequential activities of ADAM17 and the Presenilin/Îł-secretase complex, indicating that Mertk is cleaved homeostatically by the combined sequential action of ADAM17 and Îł-secretase, after which the cleaved intracellular fragment of Mertk is degraded in a proteasome-dependent mechanism. Using chimeric Flag-Mertk-EGFP-Myc reporter receptors, we confirm that inhibitors of Îł-secretase and MG132, which inhibits the 26S proteasome, stabilize the intracellular fragment of Mertk without evidence of nuclear translocation. Finally, the treatment of cells with active Îł-carboxylated Gas6, but not inactive Warfarin-treated non-Îł-carboxylated Gas6, regulates a distinct proteolytic itinerary-involved receptor clearance and lysosomal proteolysis. Together, these results indicate that pleotropic and complex proteolytic activities regulate Mertk ectodomain cleavage as a homeostatic negative regulatory event to safeguard against the overactivation of Mertk

    Insights into next generation sequencing guided antibody selection strategies

    Full text link
    Abstract Therapeutic antibody discovery often relies on in-vitro display methods to identify lead candidates. Assessing selected output diversity traditionally involves random colony picking and Sanger sequencing, which has limitations. Next-generation sequencing (NGS) offers a cost-effective solution with increased read depth, allowing a comprehensive understanding of diversity. Our study establishes NGS guidelines for antibody drug discovery, demonstrating its advantages in expanding the number of unique HCDR3 clusters, broadening the number of high affinity antibodies, expanding the total number of antibodies recognizing different epitopes, and improving lead prioritization. Surprisingly, our investigation into the correlation between NGS-derived frequencies of CDRs and affinity revealed a lack of association, although this limitation could be moderately mitigated by leveraging NGS clustering, enrichment and/or relative abundance across different regions to enhance lead prioritization. This study highlights NGS benefits, offering insights, recommendations, and the most effective approach to leverage NGS in therapeutic antibody discovery
    corecore