247 research outputs found
Theoretical studies in support of the 3M-vapor transport (PVTOS-) experiments
Results are reported for a preliminary theoretical study of the coupled mass-, momentum-, and heat-transfer conditions expected within small ampoules used to grow oriented organic solid (OS-) films, by physical vapor transport (PVT) in microgravity environments. It is show that previous studies made restrictive assumptions (e.g., smallness of delta T/T, equality of molecular diffusivities) not valid under PVTOS conditions, whereas the important phenomena of sidewall gas creep, Soret transport of the organic vapor, and large vapor phase supersaturations associated with the large prevailing temperature gradients were not previously considered. Rational estimates are made of the molecular transport properties relevant to copper-phthalocyanine monomeric vapor in a gas mixture containing H2(g) and Xe(g). Efficient numerical methods have been developed and are outlined/illustrated here to making steady axisymmetric gas flow calculations within such ampoules, allowing for realistic realistic delta T/T(sub)w-values, and even corrections to Navier-Stokes-Fourier 'closure' for the governing continuum differential equations. High priority follow-on studies are outlined based on these new results
Research on chemical vapor deposition processes for advanced ceramic coatings
Our interdisciplinary background and fundamentally-oriented studies of the laws governing multi-component chemical vapor deposition (VD), particle deposition (PD), and their interactions, put the Yale University HTCRE Laboratory in a unique position to significantly advance the 'state-of-the-art' of chemical vapor deposition (CVD) R&D. With NASA-Lewis RC financial support, we initiated a program in March of 1988 that has led to the advances described in this report (Section 2) in predicting chemical vapor transport in high temperature systems relevant to the fabrication of refractory ceramic coatings for turbine engine components. This Final Report covers our principal results and activities for the total NASA grant of $190,000. over the 4.67 year period: 1 March 1988-1 November 1992. Since our methods and the technical details are contained in the publications listed (9 Abstracts are given as Appendices) our emphasis here is on broad conclusions/implications and administrative data, including personnel, talks, interactions with industry, and some known applications of our work
Fluid Creep Effects on Near-Wall Solute Transport for Non-Isothermal Ampoules
There is a growing practical and theoretical interest in developing accurate macroscopic modelling for flows arising in chemical or physical vapor transport (VT) crystal growth experiments, including those conducted in reduced gravity environments. Rosner was the first person to point out that previously neglected rarefield gas dynamics phenomena (Stefan and bouyancy-driven flows) become rather important sources of convection. In particular, the combination of rarefaction and strong gradients of temperature (and/or concentration) tangential to the side-walls of the ampoule induces convective flows known as thermal (and concentration) 'creep' respectively. His order-of-magnitude estimates revealed that thermal creep effects can be non-negligible even at normal gravitational levels. On the macroscopic level, the bulk fluid mechanics can be adequately described by the familiar macroscopic equations as long as the boundary conditions are modified to account for the integrated effect of kinetic boundary layers adjacent to solid boundaries. Motivated by the growing importance of these phenomena, we have embarked on a series of computational studies to elucidate these fundamental creep-induced effects for a rarefied gas in simple, two-dimensional confined geometries. However, unlike previous related studies, we resort to a microscopic description of the gas, mathematically expressed by the Boltzmann integro-differential equation. We employ the direct simulation Monte Carlo (DSMC) method of Bird, the theoretical foundations and several practical applications. In the case of thermally induced flows, the no-time counter method of Bird is used, as implemented for a hard-sphere gas. The scheme has been also extended to account for realistic molecular interaction models, an extension necessary if the diffusion physics underlying concentration creep are to be captured
Numerical Analysis of an Impinging Jet Reactor for the CVD and Gas-Phase Nucleation of Titania
We model a cold-wall atmospheric pressure impinging jet reactor to study the CVD and gas-phase nucleation of TiO2 from a titanium tetra-iso-propoxide (TTIP)/oxygen dilute source gas mixture in nitrogen. The mathematical model uses the computational code FIDAP and complements our recent asymptotic theory for high activation energy gas-phase reactions in thin chemically reacting sublayers. The numerical predictions highlight deviations from ideality in various regions inside the experimental reactor. Model predictions of deposition rates and the onset of gas-phase nucleation compare favorably with experiments. Although variable property effects on deposition rates are not significant (approximately 11 percent at 1000 K), the reduction rates due to Soret transport is substantial (approximately 75 percent at 1000 K)
Integration, Effectiveness and Adaptation in Social Systems
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66951/2/10.1177_009539977500600402.pd
Prospects for Pentaquark Production at Meson Factories
Following Rosner [hep-ph/0312269], we consider B-decay production channels
for the exotic I=0 and pentaquarks that have been recently reported. We
also discuss new search channels for isovector pentaquarks, such as the
, that are generically present in chiral soliton
models but were not observed in recent experiments. Futhermore, we argue that
weak decays of charmed baryons, such as the and ,
provide another clean way of detecting exotic baryons made of light quarks
only. We also discuss discovery channels for charmed pentaquarks, such as the
isosinglet , in weak decays of bottom mesons and
baryons. Finally, we discuss prospects for inclusive production of pentaquarks
in collisions, with associated production of particles carrying the
opposite baryon number.Comment: 15 pages, LaTeX; v2,v3: minor corrections, references added; v4:
minor modifications, the version published in Physics Letters
A comparison of forward and backward pp pair knockout in 3He(e,e'pp)n
Measuring nucleon-nucleon Short Range Correlations (SRC) has been a goal of
the nuclear physics community for many years. They are an important part of the
nuclear wavefunction, accounting for almost all of the high-momentum strength.
They are closely related to the EMC effect. While their overall probability has
been measured, measuring their momentum distributions is more difficult. In
order to determine the best configuration for studying SRC momentum
distributions, we measured the He reaction, looking at events
with high momentum protons ( GeV/c) and a low momentum neutron
( GeV/c). We examined two angular configurations: either both protons
emitted forward or one proton emitted forward and one backward (with respect to
the momentum transfer, ). The measured relative momentum distribution
of the events with one forward and one backward proton was much closer to the
calculated initial-state relative momentum distribution, indicating that
this is the preferred configuration for measuring SRC.Comment: 8 pages, 9 figures, submitted to Phys Rev C. Version 2 incorporates
minor corrections in response to referee comment
Measurement of the neutron F2 structure function via spectator tagging with CLAS
We report on the first measurement of the F2 structure function of the
neutron from semi-inclusive scattering of electrons from deuterium, with
low-momentum protons detected in the backward hemisphere. Restricting the
momentum of the spectator protons to < 100 MeV and their angles to < 100
degrees relative to the momentum transfer allows an interpretation of the
process in terms of scattering from nearly on-shell neutrons. The F2n data
collected cover the nucleon resonance and deep-inelastic regions over a wide
range of Bjorken x for 0.65 < Q2 < 4.52 GeV2, with uncertainties from nuclear
corrections estimated to be less than a few percent. These measurements provide
the first determination of the neutron to proton structure function ratio
F2n/F2p at 0.2 < x < 0.8 with little uncertainty due to nuclear effects.Comment: 6 pages, 3 page
Differential cross section and recoil polarization measurements for the gamma p to K+ Lambda reaction using CLAS at Jefferson Lab
We present measurements of the differential cross section and Lambda recoil
polarization for the gamma p to K+ Lambda reaction made using the CLAS detector
at Jefferson Lab. These measurements cover the center-of-mass energy range from
1.62 to 2.84 GeV and a wide range of center-of-mass K+ production angles.
Independent analyses were performed using the K+ p pi- and K+ p (missing pi -)
final-state topologies; results from these analyses were found to exhibit good
agreement. These differential cross section measurements show excellent
agreement with previous CLAS and LEPS results and offer increased precision and
a 300 MeV increase in energy coverage. The recoil polarization data agree well
with previous results and offer a large increase in precision and a 500 MeV
extension in energy range. The increased center-of-mass energy range that these
data represent will allow for independent study of non-resonant K+ Lambda
photoproduction mechanisms at all production angles.Comment: 22 pages, 16 figure
Differential cross sections and recoil polarizations for the reaction gamma p -> K+ Sigma0
High-statistics measurements of differential cross sections and recoil
polarizations for the reaction have been
obtained using the CLAS detector at Jefferson Lab. We cover center-of-mass
energies () from 1.69 to 2.84 GeV, with an extensive coverage in the
production angle. Independent measurements were made using the
() and () final-state topologies,
and were found to exhibit good agreement. Our differential cross sections show
good agreement with earlier CLAS, SAPHIR and LEPS results, while offering
better statistical precision and a 300-MeV increase in coverage.
Above GeV, - and -channel Regge scaling behavior
can be seen at forward- and backward-angles, respectively. Our recoil
polarization () measurements represent a substantial increase in
kinematic coverage and enhanced precision over previous world data. At forward
angles we find that is of the same magnitude but opposite sign as
, in agreement with the static SU(6) quark model prediction of
. This expectation is violated in some mid- and
backward-angle kinematic regimes, where and are of
similar magnitudes but also have the same signs. In conjunction with several
other meson photoproduction results recently published by CLAS, the present
data will help constrain the partial wave analyses being performed to search
for missing baryon resonances.Comment: 23 pages, 17 figure
- …