18 research outputs found

    What controls the outer mitochondrial membrane permeability for ADP: facts for and against the role of oncotic pressure

    Get PDF
    AbstractIn our study 10% of bovine serum albumin was added to the physiological incubation medium to mimic the oncotic pressure of the cellular cytoplasm and to test for its effect on the respiration of isolated rat heart mitochondria, saponin- or saponin plus crude collagenase (type IV)-treated heart muscle fibers and saponin-treated rat quadriceps muscle fibers. Pyruvate and malate were used as substrates. We found that albumin slightly decreased the maximal ADP-stimulated respiration rate only for saponin-treated heart muscle fibers. The apparent Km ADP of oxidative phosphorylation increased significantly, by 70–100%, for isolated heart mitochondria, saponin plus collagenase-treated heart muscle fibers and for saponin-treated quadriceps muscle fibers but remained unchanged for saponin-treated heart muscle fibers. The saponin-treated heart muscle fibers were characterized by a very high control apparent Km ADP value (234±24 μM ADP) compared with other preparations (14–28 μM ADP). The results suggest that in vivo the oncotic pressure is not the relevant factor causing the low outer mitochondrial membrane permeability for ADP in cardiomyocytes, in contrast to quadriceps muscle cells. It is likely that the outer mitochondrial membrane-bound protein(s) which is supposed to remain in saponin-treated heart muscle fibers is responsible for this property of the membrane

    In vitro permeation studies of phenolics from horse chestnut seed gels prepared with different polyacrylic acid polymer derivatives

    Get PDF
    The aim of this study was to investigate the effects of polyacrylic acid polymers (Ultrez 10, Ultrez 20, Carbopol 980, and Carbopol 940) on the viscosity and the in vitro permeation of phenolic compounds from the gel prepared from natural horse chestnut seed extract. Experiments were performed in the presence and in the absence of peppermint oil (Mentha piperita). Our results showed that peppermint oil decreased the viscosity of the gels and permeation of phenolic compounds from all gel samples. Results show that the highest content of phenolic compounds (1.758 μg cm–2) permeated in vitro from gel based on Carbopol Ultrez 20 without peppermint oil added (p < 0.05 vs. other tested polymers)

    Flavonoids as Anticancer Agents

    No full text
    Flavonoids are polyphenolic compounds subdivided into 6 groups: isoflavonoids, flavanones, flavanols, flavonols, flavones and anthocyanidins found in a variety of plants. Fruits, vegetables, plant-derived beverages such as green tea, wine and cocoa-based products are the main dietary sources of flavonoids. Flavonoids have been shown to possess a wide variety of anticancer effects: they modulate reactive oxygen species (ROS)-scavenging enzyme activities, participate in arresting the cell cycle, induce apoptosis, autophagy, and suppress cancer cell proliferation and invasiveness. Flavonoids have dual action regarding ROS homeostasis&mdash;they act as antioxidants under normal conditions and are potent pro-oxidants in cancer cells triggering the apoptotic pathways and downregulating pro-inflammatory signaling pathways. This article reviews the biochemical properties and bioavailability of flavonoids, their anticancer activity and its mechanisms of action

    Molecular Mechanisms of Melatonin-Mediated Cell Protection and Signaling in Health and Disease

    No full text
    Melatonin, an endogenously synthesized indolamine, is a powerful antioxidant exerting beneficial action in many pathological conditions. Melatonin protects from oxidative stress in ischemic/reperfusion injury, neurodegenerative diseases, and aging, decreases inflammation, modulates the immune system, inhibits proliferation, counteracts the Warburg effect, and promotes apoptosis in various cancer models. Melatonin stimulates antioxidant enzymes in the cells, protects mitochondrial membrane phospholipids, especially cardiolipin, from oxidation thus preserving integrity of the membranes, affects mitochondrial membrane potential, stimulates activity of respiratory chain enzymes, and decreases the opening of mitochondrial permeability transition pore and cytochrome c release. This review will focus on the molecular mechanisms of melatonin effects in the cells during normal and pathological conditions and possible melatonin clinical applications

    Impact of Gelatin Supplemented with Gum Arabic, Tween 20, and β-Cyclodextrin on the Microencapsulation of Turkish Oregano Extract

    No full text
    Microencapsulation protects core materials from deteriorating due to environmental conditions, such as moisture or oxidation, and improves the bioavailability of active compounds, allowing one to make solid formulations from oils and increase their solubility. Wall and core material properties determine the microencapsulation efficiency and the best results are achieved when a wall material mixture is used to prepare the microcapsules. In this work, we optimized the wall material composition (gelatin supplemented with gum Arabic, Tween 20, and &beta;-cyclodextrin) of Turkish oregano microcapsules prepared by spray-drying technology to increase the product yield, the encapsulation efficiency, and to achieve narrower particle size distribution. When the wall material solution contained 10 g of gelatin, 7.5 g of gum Arabic, 1.99 g of Tween 20, 1.98 g of &beta;-cyclodextrin, and 20 g of ethanolic oregano extract, the encapsulation efficiency of oregano&rsquo;s active compounds, rosmarinic acid and carvacrol, were 96.7% and 99.8%, respectively, and the product yield was 85.63%. The physicochemical properties, microscopic morphology, and in vitro release of the prepared microcapsules were characterized in the study. The use of gelatin as the main coating material, in supplementation with gum Arabic, Tween 20, and &beta;-cyclodextrin, not only improved the encapsulation efficiency, but also increased the in vitro release of both main active compounds of Turkish oregano extract&mdash;rosmarinic acid and carvacrol

    Pleiotropic Effects of Isoflavones in Inflammation and Chronic Degenerative Diseases

    No full text
    Isoflavones are phytoestrogens of plant origin, mostly found in the members of the Fabaceae family, that exert beneficial effects in various degenerative disorders. Having high similarity to 17-β-estradiol, isoflavones can bind estrogen receptors, scavenge reactive oxygen species, activate various cellular signal transduction pathways and modulate growth and transcription factors, activities of enzymes, cytokines, and genes regulating cell proliferation and apoptosis. Due to their pleiotropic activities isoflavones might be considered as a natural alternative for the treatment of estrogen decrease-related conditions during menopause. This review will focus on the effects of isoflavones on inflammation and chronic degenerative diseases including cancer, metabolic, cardiovascular, neurodegenerative diseases, rheumatoid arthritis and adverse postmenopausal symptoms

    Cannabis sativa L. Bioactive Compounds and Their Protective Role in Oxidative Stress and Inflammation

    No full text
    Cannabis (Cannabis sativa L.) plants from the family Cannabidaceae have been used since ancient times, to produce fibers, oil, and for medicinal purposes. Psychoactive delta-9-tetrahydrocannabinol (THC) and nonpsychoactive cannabidiol (CBD) are the main pharmacologically active compounds of Cannabis sativa. These compounds have, for a long time, been under extensive investigation, and their potent antioxidant and inflammatory properties have been reported, although the detailed mechanisms of their actions have not been fully clarified. CB1 receptors are suggested to be responsible for the analgesic effect of THC, while CB2 receptors may account for its immunomodulatory properties. Unlike THC, CBD has a very low affinity for both CB1 and CB2 receptors, and behaves as their negative allosteric modulator. CBD activity, as a CB2 receptor inverse agonist, could be important for CBD anti-inflammatory properties. In this review, we discuss the chemical properties and bioavailability of THC and CBD, their main mechanisms of action, and their role in oxidative stress and inflammation

    In Vitro and Clinical Safety Assessment of the Multiple W/O/W Emulsion Based on the Active Ingredients from Rosmarinus officinalis L., Avena sativa L. and Linum usitatissimum L.

    No full text
    The multiple W/O/W emulsion supplemented with the extracts of Rosmarinus officinalis L., Avena sativa L. and Linum usitatissimum L. was prepared in the study, its active compounds were determined by HPLC and its safety was evaluated in vitro by the means of reconstituted human skin model EpiDerm™ for the assessment of its irritation, phototoxicity and early skin inflammation effects and by the 48 h human skin patch test for its skin irritation and allergenic potential. The microbiological challenge test of W/O/W emulsion was performed to ensure its preservation efficiency. The results showed that the W/O/W emulsion loaded with self-preserving plant-based bio-actives had no irritant potential, was not phototoxic and did not provoke skin inflammation or sensitization and thus could be used as a safe base for cosmetic products. Furthermore, our results demonstrate that the safety evaluation of cosmetic ingredients of natural or organic origin could be easily performed using reconstructed human skin model EpiDerm™ similar to the well-defined chemicals used in the cosmetics industry

    <i>Cannabis sativa</i> L. Bioactive Compounds and Their Protective Role in Oxidative Stress and Inflammation

    No full text
    Cannabis (Cannabis sativa L.) plants from the family Cannabidaceae have been used since ancient times, to produce fibers, oil, and for medicinal purposes. Psychoactive delta-9-tetrahydrocannabinol (THC) and nonpsychoactive cannabidiol (CBD) are the main pharmacologically active compounds of Cannabis sativa. These compounds have, for a long time, been under extensive investigation, and their potent antioxidant and inflammatory properties have been reported, although the detailed mechanisms of their actions have not been fully clarified. CB1 receptors are suggested to be responsible for the analgesic effect of THC, while CB2 receptors may account for its immunomodulatory properties. Unlike THC, CBD has a very low affinity for both CB1 and CB2 receptors, and behaves as their negative allosteric modulator. CBD activity, as a CB2 receptor inverse agonist, could be important for CBD anti-inflammatory properties. In this review, we discuss the chemical properties and bioavailability of THC and CBD, their main mechanisms of action, and their role in oxidative stress and inflammation

    Naringin and Naringenin: Their Mechanisms of Action and the Potential Anticancer Activities

    No full text
    Naringin and naringenin are the main bioactive polyphenols in citrus fruits, the consumption of which is beneficial for human health and has been practiced since ancient times. Numerous studies have reported these substances&rsquo; antioxidant and antiandrogenic properties, as well as their ability to protect from inflammation and cancer, in various in vitro and in vivo experimental models in animals and humans. Naringin and naringenin can suppress cancer development in various body parts, alleviating the conditions of cancer patients by acting as effective alternative supplementary remedies. Their anticancer activities are pleiotropic, and they can modulate different cellular signaling pathways, suppress cytokine and growth factor production and arrest the cell cycle. In this narrative review, we discuss the effects of naringin and naringenin on inflammation, apoptosis, proliferation, angiogenesis, metastasis and invasion processes and their potential to become innovative and safe anticancer drugs
    corecore