24 research outputs found

    A GODFIP Control Algorithm for an IRC Grain Dryer

    Get PDF
    Drying is an energy intensive and complex nonlinear process and it is difficult to control and make the traditional control meet the challenges. In order to effectively control the output grain moisture content of a combined infrared radiation and convection (IRC) grain dryer, taking into account the superiority of the fuzzy control method in dealing with complex systems, in this article, a genetic optimization dual fuzzy immune PID (Proportional-Integral-Derivative) (GODFIP) controller was proposed from the aspects of energy savings, stability, accuracy, and rapidity. The structure of the GODFIP controller consists of two fuzzy controllers, a PID controller, an immune algorithm, and a genetic optimization algorithm. In addition, a NARX model which can give relatively good predictive output information of the IRC dryer was established and used to represent the actual drying process to verify the control performance in the control simulation and anti-interference tests. The effectiveness of this controller was demonstrated by computer simulations, and the anti-interference performance comparative study with the other controllers further confirmed the superiority of the proposed grain drying controller which has the least value of performance objective function, the shortest rising time, and the best anti-interference ability compared to the other three compared controllers

    Catalytic Performance of La-Ni/Al2O3 Catalyst for CO2 Reforming of Ethanol

    Get PDF
    Bio-derived ethanol has been considered as an attractive and alternative feedstock for dry or steam reforming reactions to generate renewable hydrogen, which may be used for replacement of conventional fossil fuels. Ethanol dry reforming (EDR) is an environmentally-friendly process since it transforms greenhouse gas, CO2 to value-added products and ethanol can be easily obtained from biomass which is free of catalyst poisons (i.e. sulphur-containing compounds). However, there are currently limited studies regarding syngas production from EDR [1, 2]. Ni-based catalysts are commonly used for reforming reactions due to its capability of C-C bond rupture, relatively low cost and high availability compared to precious metals [2]. Nevertheless, carbonaceous deposition may considerably deteriorate catalytic activity and stability of Ni-based catalysts. La promoter reportedly hindered carbon deposition and improved catalytic activity [3]. Hence, the objective of this research was to investigate the effect of La promotion on 10%Ni/Al2O3 catalyst for EDR

    Promising hydrothermal technique for efficient CO2 methanation over Ni/SBA-15

    Get PDF
    The comparative study of different hydrothermal treatment techniques (Reflux (R) and Teflon (T)) and without hydrothermal technique (W) towards efficient CO2 methanation over Ni/SBA-15 was discussed. X-ray diffraction (XRD), inductive coupling plasma-atomic emission spectroscopy (ICP-AES), N2 adsorption-desorption isotherms (BET), Fourier transform infrared (FTIR) spectroscopy, UV-vis diffuse reflectance spectroscopy (UV-Vis DRS), scanning electron microscope – energy dispersion x-ray (SEM-EDX), and transmission electron microscope (TEM) analysis showed that Ni/SBA-15(R) possessed fascinating catalytic properties owing to the highest surface area (814 m2/g) and pore diameter (5.49 nm) of SBA-15(R), finest metal particles (17.92 nm), strongest metal-support interaction and highest concentration of basic sites. The efficacy of Ni/SBA-15 towards CO2 methanation was descending as Ni/SBA-15(R) > Ni/SBA-15(T) > Ni/SBA-15(W), implying the outstanding performance of Ni/SBA-15(R) which in parallel with the characterization results. The lowest performance of Ni/SBA-15(W) was due to the poorest properties of support; lowest surface area and pore diameter, largest Ni sizes, weakest metal-support interaction and lowest concentration of basic sites. This study successfully developed fascinating Ni/SBA-15 through the reflux hydrothermal treatment technique for CO2 methanation

    Design of an intelligent controller for a grain dryer: A support vector machines for regression inverse model proportional–integral–derivative controller

    No full text
    Grain drying control is a challenging task owing to the complex heat and mass exchange process. To precisely control the outlet grain moisture content (MC) of a continuous mixed-flow grain dryer, in this paper, we proposed a genetically optimized inverse model proportional–integral–derivative (PID) controller based on support vector machines for regression algorithm which is named the GO-SVR-IMCPID controller. The structure of the GO-SVR-IMCPID controller consists of a genetic optimization algorithm, an indirect inverse model predictive controller, and a PID controller. In addition, to verify the control performances of the proposed controller in the simulation study, we have established a nonlinear mathematical model for the mixed-flow grain dryer to represent the nonlinear grain drying process. Finally, the control performance and the robustness of the GO-SVR-IMCPID controller were simulated and compared with the other controllers. By the simulation results, it is shown that this proposed algorithm can track the target value precisely and has fewer steady errors and strong ability of anti-interference. Furthermore, it has further confirmed the superiority of the proposed grain drying controller by comparing it with the other controllers

    Evaluation of La-promoted Ni/Al2O3 Catalyst for Ethanol Dry Reforming

    Get PDF
    Greenhouse emissions from combustion of fossil fuels have led to undesirable environmental issues. Hydrogen as a clean and renewable energy is therefore demanded urgently for petroleum-based energy substitution. Although the common method for H2 production is reforming of hydrocarbons which are unsustainable, ethanol has been considered as an economically attractive feedstock for replacing hydrocarbons due to its high availability, renewability and low toxicity [1]. Ethanol steam reforming has been widely researched whilst the knowledge about dry reforming of ethanol (DRE) is still limited, especially rare-earth promoted Ni-based catalyst

    Enhanced Catalytic Performance Of Ni/Sba-15 Towards Co2 Methanation Via P123-Assisted Method

    Get PDF
    This study focused on the enhancement of catalytic performance of Ni/SBA-15 towards CO2 methanation via P123(PEG-PPG-PEG triblock copolymer)-assisted impregnation method. The pysical and chemical properties of the catalysts were characterized using XRD, BET and FTIR, meanwhile the catalytic performance of catalysts towards CO2 methanation were evaluated using stainless steel fixed bed reactor. The presence of coke on the surface of catalysts was characterized using TGA analysis. XRD and BET results revealed that the dispersion of Ni particles on the surface of SBA-15 were improved with P123 (Ni/SBA-15(P123)) as compared to without P123 (Ni/SBA-15). FTIR analysis revealed that P123 enhanced the formation of metal-support interaction (Si-O-Ni) through the substitution of O‒H with O‒Ni. Ni/SBA-15(P123) exhibited higher activity, better stability and less carbon formation owing to its smaller metal particles, stronger metal-support interaction and more homogenous metal dispersion, which altered the properties of catalyst towards an excellent catalytic performance. This study provides new perspective on the beneficial effect of P123- assisted impregnation method in the enhancement of catalytic performance of Ni/SBA-15 towards CO2 methanation

    Dry reforming of methane over Ni/dendritic fibrous SBA-15 (Ni/DFSBA-15) : optimization, mechanism, and regeneration studies

    Get PDF
    Dendritic fibrous type SBA-15 (DFSBA-15) was recently discovered with its outstanding catalytic performance and coke resistance as compared to the conventional SBA-15. The operating conditions for dry reforming of methane (DRM) over 10Ni/DFSAB-15 were optimized by using response surface methodology (RSM), followed by stability and regeneration study. Characterization results (TEM and FESEM) confirmed the homogenous distribution of NiO particles with no morphological change in spherical DFSBA-15 upon Ni addition. Process parameters, such as reaction temperature (X1, 700 °C–900 °C), gas hourly space velocity (X2, 15,000 mL/g.h ‒ 35,000 mL/g.h), and CH4/CO2 ratio (X3, 1–3) were studied over CO2 conversion (Y1), CH4 conversion (Y2), and H2/CO ratio (Y3). The optimal reaction conditions were found at X1 = 794.37 °C, X2 = 23,815.022 mL/g.h, and X3 = 1.199, with Y1 = 95.67%, Y2 = 93.48%, and Y3 = 0.983. The in-situ FTIR studies of adsorbed CH4, CO2, and CH4 + CO2 confirmed the formation of unidentate carbonate, bidentate carbonate, and linear carbonyl species as intermediate species. 10Ni/DFSBA-15 presented good reproducibility by using both regeneration medium (air and CO2/N2) with two-fold regeneration by air as compared to CO2/N2. It was proven that the synthesized 10Ni/DFSBA-15 was appreciably stable and prone to be regenerated by air for DRM under optimal conditions

    Influence of metallic and basic sites of Ni-promoted SBA-15 on the mechanistic path of CO2-methanation

    Get PDF
    The utilization of carbon dioxide (CO2) has become an important topic in recent years. As CO2 is one of the main contributors to greenhouse effect and hence to climate change, there is a growing interest in its use as a feedstock in chemical processes. The conversion of CO2 into methane (CH4) has been investigated extensively, using variety of supported metal catalysts including Ni/SBA-15. However, proper design of catalyst preparation is needed to prepare well-dispersed Ni/SBA-15. In addition, the real function of metal and basic sites on the CO2 methanation process over Ni/SBA-15 is still unclear. Therefore, the objective of this study is to synthesis the well-dispersed Ni/SBA-15 for CO2 methanation and investigates the influence of metallic and basic sites of Ni/SBA-15 on the mechanistic path of CO2 methanation. The well-dispersed Ni/SBA-15 were synthesized by studying the effect of TEOS/P123 mass ratios (R1.5, R2.21, R3.0), hydrothermal techniques (Reflux (R) and Teflon (T)) and Ni content (1 – 10 wt%). The properties of Ni/ SBA-15 were determined by XRD, BET, FTIR, TEM, FESEM-EDX, H2-TPR. The CO2 methanation were carried out in a stainless steel fixed-bed reactor and the role of metallic and basic sites on mechanistic path of CO2 methanation were clarified using in-situ FTIR adsorbed pyrrole, H2, CO2 and H2 + CO2. The results revealed that the well-dispersed Ni/SBA-15 was successfully synthesized at TEOS/P123 = 2.21, reflux hydrothermal technique and 5 wt.% Ni, with CO2 conversion = 99.7% and CH4 yield = 98.2% at T = 673 K. The in-situ FTIR studies of adsorbed H2, CO2, and H2 + CO2 confirmed that the CO2 methanation of Ni/SBA-15 proceeded by CO dissociative reaction pathway. Firstly, the CO2 and H2 molecule were dissociated to CO, O, and H atoms on the surface of Ni metal active sites and spillover onto the support to form unidentate carbonates, bidentate carbonates and linear carbonyl as the main adsorption species. Then, these intermediate species were further undergoing hydrogenation with the atomic hydrogen to form CH4 and H2O. In conclusion, well dispersed Ni/SBA-15 was successfully synthesized and the role of metallic and basic sites of Ni/SBA-15 on CO2 methanation were successfully discovered. The metal sites were responsible in the dissociation of CO2 and H2, while the concentration of basic sites influenced the CO2 adsorption ability of the catalyst

    Hydrogen production via CO2-CH4 reforming over cobalt-supported mesoporous alumina: A kinetic evaluation

    No full text
    The performance of cobalt supported on mesoporous alumina (MA) under the influence of reaction temperature (923 K–1073 K) and reactant partial pressure (10 kPa–40 kPa) for CO2–CH4 reforming was executed by using a tubular fixed-bed reactor. 10%Co/MA exhibited great catalytic performance (, and), credited to the well dispersion of Co within pore MA, strong metal-support interaction, and MA confinement ability. Based on Langmuir-Hinshelwood kinetic analysis, the dissociative adsorption of both reactants on a single Co active site was selected for this study. The lower value of activation energy (28.9 kJ mol−1) suggested that Co particles were finely scattered on the MA surface. Regardless of carbon types, the amount of coke accumulated on the spent 10%Co/MA within 8 h of CO2–CH4 reforming was inhibited due to fine Co distribution inside MA structure, as well as lessened with the raise of reforming temperature from 923 to 1073 K due to improvement in reverse Boudouard reaction
    corecore