1,319 research outputs found
Low, Milky-Way like, Molecular Gas Excitation of Massive Disk Galaxies at z~1.5
We present evidence for Milky-Way-like, low-excitation molecular gas
reservoirs in near-IR selected massive galaxies at z~1.5, based on IRAM Plateau
de Bure Interferometer CO[3-2] and NRAO Very Large Array CO[1-0] line
observations for two galaxies that had been previously detected in CO[2-1]
emission. The CO[3-2] flux of BzK-21000 at z=1.522 is comparable within the
errors to its CO[2-1] flux, implying that the CO[3-2] transition is
significantly sub-thermally excited. The combined CO[1-0] observations of the
two sources result in a detection at the 3 sigma level that is consistent with
a higher CO[1-0] luminosity than that of CO[2-1]. Contrary to what is observed
in submillimeter galaxies and QSOs, in which the CO transitions are thermally
excited up to J>=3, these galaxies have low-excitation molecular gas, similar
to that in the Milky Way and local spirals. This is the first time that such
conditions have been observed at high redshift. A Large Velocity Gradient
analysis suggests that molecular clouds with density and kinetic temperature
comparable to local spirals can reproduce our observations. The similarity in
the CO excitation properties suggests that a high, Milky-Way-like, CO to H_2
conversion factor could be appropriate for these systems. If such
low-excitation properties are representative of ordinary galaxies at high
redshift, centimeter telescopes such as the Expanded Very Large Array and the
longest wavelength Atacama Large Millimeter Array bands will be the best tools
for studying the molecular gas content in these systems through the
observations of CO emission lines.Comment: 5 pages, 4 figures. ApJ Letters in pres
A CO emission line from the optical and near-IR undetected submillimeter galaxy GN10
We report the detection of a CO emission line from the submillimiter galaxy
(SMG) GN10 in the GOODS-N field. GN10 lacks any counterpart in extremely deep
optical and near-IR imaging obtained with the Hubble Space Telescope and
ground-based facilities. This is a prototypical case of a source that is
extremely obscured by dust, for which it is practically impossible to derive a
spectroscopic redshift in the optical/near-IR. Under the hypothesis that GN10
is part of a proto-cluster structure previously identified at z~4.05 in the
same field, we searched for CO[4-3] at 91.4 GHz with the IRAM Plateau de Bure
Interferometer, and successfully detected a line. We find that the most likely
redshift identification is z=4.0424+-0.0013, based on: 1) the very low chance
that the CO line is actually serendipitous from a different redshift; 2) a
radio-IR photometric redshift analysis; 3) the identical radio-IR SED, within a
scaling factor, of two other SMGs at the same redshift. The faintness at
optical/near-IR wavelengths requires an attenuation of A_V~5-7.5 mag. This
result supports the case that a substantial population of very high-z SMGs
exists that had been missed by previous spectroscopic surveys. This is the
first time that a CO emission line has been detected for a galaxy that is
invisible in the optical and near-IR. Our work demonstrates the power of
existing and planned facilities for completing the census of star formation and
stellar mass in the distant Universe by measuring redshifts of the most
obscured galaxies through millimeter spectroscopy.Comment: 5 pages, 4 figures. ApJ Letters in pres
Very High Gas Fractions and Extended Gas Reservoirs in z=1.5 Disk Galaxies
We present evidence for very high gas fractions and extended molecular gas
reservoirs in normal, near-infrared selected (BzK) galaxies at z~1.5, based on
multi-configuration CO[2-1] observations obtained at the IRAM PdBI. Six of the
six galaxies observed were securely detected. High resolution observations
resolve the CO emission in four of them, implying sizes of order of 6-11 kpc
and suggesting the presence of rotation. The UV morphologies are consistent
with clumpy, unstable disks, and the UV sizes are consistent with the CO sizes.
The star formation efficiencies are homogeneously low and similar to local
spirals - the resulting gas depletion times are ~0.5 Gyr, much higher than what
is seen in high-z submm galaxies and quasars. The CO luminosities can be
predicted to within 0.15 dex from the star formation rates and stellar masses,
implying a tight correlation of the gas mass with these quantities. We use
dynamical models of clumpy disk galaxies to derive dynamical masses. These
models are able to reproduce the peculiar spectral line shapes of the CO
emission. After accounting for the stellar and dark matter masses we derive gas
masses of 0.4-1.2x10^11 Msun. The conversion factor is very high:
alpha_CO=3.6+-0.8, consistent with the Galaxy but four times higher than that
of local ultra-luminous IR galaxies. The gas accounts for an impressive 50-65%
of the baryons within the galaxies' half light radii. We are witnessing truly
gas-dominated galaxies at z~1.5, a finding that explains the high specific SFRs
observed for z>1 galaxies. The BzK galaxies can be viewed as scaled-up versions
of local disk galaxies, with low efficiency star formation taking place inside
extended, low excitation gas disks. They are markedly different than local
ULIRGs and high-z submm galaxies, which have more excited and compact gas.Comment: Accepted for publication in Astrophysical Journal, 22 pages, 18
figures, minor revision
Near-IR bright galaxies at z~2. Entering the spheroid formation epoch ?
Spectroscopic redshifts have been measured for 9 K-band luminous galaxies at
1.7 < z < 2.3, selected with Ks < 20 in the "K20 survey" region of the Great
Observatories Origins Deep Survey area. Star formation rates (SFRs) of ~100-500
Msun/yr are derived when dust extinction is taken into account. The fitting of
their multi-color spectral energy distributions indicates stellar masses M ~
10^11 Msun for most of the galaxies. Their rest-frame UV morphology is highly
irregular, suggesting that merging-driven starbursts are going on in these
galaxies. Morphologies tend to be more compact in the near-IR, a hint for the
possible presence of older stellar populations. Such galaxies are strongly
clustered, with 7 out of 9 belonging to redshift spikes, which indicates a
correlation length r_0 ~ 9-17 h^-1 Mpc (1 sigma range). Current semianalytical
models of galaxy formation appear to underpredict by a large factor (about 30)
the number density of such a population of massive and powerful starburst
galaxies at z ~ 2. The high masses and SFRs together with the strong clustering
suggest that at z ~ 2 we may have started to explore the major formation epoch
of massive early-type galaxies.Comment: accepted on June 17. To appear on ApJ Letter
The Evolution of Early-type Field Galaxies Selected from a NICMOS Map of the Hubble Deep Field North
The redshift distribution of well-defined samples of distant early-type
galaxies offers a means to test the predictions of monolithic and hierarchical
galaxy formation scenarios. NICMOS maps of the entire Hubble Deep Field North
in the F110W and F160W filters, when combined with the available WFPC2 data,
allow us to calculate photometric redshifts and determine the morphological
appearance of galaxies at rest-frame optical wavelengths out to z ~ 2.5. Here
we report results for two subsamples of early-type galaxies, defined primarily
by their morphologies in the F160W band, which were selected from the NICMOS
data down to H160_{AB} < 24.0. The observed redshift distributions of our two
early-type samples do not match that predicted by a monolithic collapse model,
which shows an overabundance at z > 1.5. A hierarchical formation model better
matches the redshift distribution of the HDF-N early-types at z > 1.5, but
still does not adequately describe the observed early-types. The hierarchical
model predicts significantly bluer colors on average than the observed
early-type colors, and underpredicts the observed number of early-types at z <
1. [abridged]Comment: Accepted for publication in the Astronomical Journal; 54 pages, 21
figures. Figures 10 and 11 are included separately in JPEG forma
Expanded Very Large Arrays Observations of a Proto-Cluster of Molecular Gas-Rich Galaxies at z = 4.05
We present observations of the molecular gas in the GN20 proto-cluster of galaxies at z = 4.05 using the Expanded Very Large Array (EVLA). This group of galaxies is the ideal laboratory for studying the formation of massive galaxies via luminous, gas-rich starbursts within 1.6 Gyr of the big bang. We detect three galaxies in the proto-cluster in CO 2-1 emission, with gas masses (H_2) between 10^(10) and 10^(11) Ă (α/0.8) M_â. The emission from the brightest source, GN20, is resolved with a size ~2'' and has a clear north-south velocity gradient, possibly indicating ordered rotation. The gas mass in GN20 is comparable to the stellar mass (1.3 Ă 10^(11) Ă (α/0.8) M_â and 2.3 Ă 10^(11) M_â, respectively), and the sum of gas plus stellar mass is comparable to the dynamical mass of the system (~3.4 Ă 10^(11)[sin (i)/sin (45°)]^(â2) M_â), within a 5 kpc radius. There is also evidence for a tidal tail extending another 2'' north of the galaxy with a narrow velocity dispersion. GN20 may be a massive, gas-rich disk that is gravitationally disturbed, but not completely disrupted. There is one Lyman-break galaxy (BD29079) in the GN20 proto-cluster with an optical spectroscopic redshift within our search volume, and we set a 3Ï limit to the molecular gas mass of this galaxy of 1.1 Ă 10^(10) Ă (α/0.8) M_â
A new photometric technique for the joint selection of star-forming and passive galaxies at 1.4<z<2.5
A simple two color selection based on B-, z-, and K- band photometry is
proposed for culling galaxies at 1.4<z<2.5 in K-selected samples and
classifying them as star-forming or passive systems. The method is calibrated
on the highly complete spectroscopic redshift database of the K20 survey,
verified with simulations and tested on other datasets. Requiring
BzK=(z-K)-(B-z)>-0.2 (AB) allows to select actively star-forming galaxies at
z>1.4, independently on their dust reddening. Instead, objects with BzK<-0.2
and (z-K)>2.5 (AB) colors include passively evolving galaxies at z>1.4, often
with spheroidal morphologies. Simple recipes to estimate the reddening, SFRs
and masses of BzK-selected galaxies are derived, and calibrated on K<20
galaxies. Based on their UV (reddening-corrected), X-ray and radio
luminosities, the BzK-selected star-forming galaxies with K<20 turn out to have
average SFR ~ 200 Msun yr^-1, and median reddening E(B-V)~0.4. Besides missing
the passively evolving galaxies, the UV selection appears to miss some relevant
fraction of the z~2 star-forming galaxies with K<20, and hence of the
(obscured) star-formation rate density at this redshift. The high SFRs and
masses add to other existing evidence that these z=2 star-forming galaxies may
be among the precursors of z=0 early-type galaxies. Theoretical models cannot
reproduce simultaneously the space density of both passively evolving and
highly star-forming galaxies at z=2. In view of Spitzer Space Telescope
observations, an analogous technique based on the RJL photometry is proposed to
complement the BzK selection and to identify massive galaxies at 2.5<z<4.0.
These color criteria should help in completing the census of the stellar mass
and of the star-formation rate density at high redshift (abridged).Comment: 19 pages, 17 figures, to appear on ApJ (20 December 2004 issue
The evolution of field early-type galaxies to z~0.7
We have measured the Fundamental Plane (FP) parameters for a sample of 30
field early-type galaxies (E/S0) in the redshift range 0.1<z<0.66. We find
that: i) the FP is defined and tight out to the highest redshift bin; ii) the
intercept \gamma evolves as d\gamma/dz=0.58+0.09-0.13 (for \Omega=0.3,
\Omega_{\Lambda}=0.7), or, in terms of average effective mass to light ratio,
as d\log(M/L_B)/dz=-0.72+0.11-0.16, i.e. faster than is observed for cluster
E/S0 -0.49+-0.05. In addition, we detect [OII] emission >5\AA in 22% of an
enlarged sample of 42 massive E/S0 in the range 0.1<z<0.73, in contrast with
the quiescent population observed in clusters at similar z. We interpret these
findings as evidence that a significant fraction of massive field E/S0
experiences secondary episodes of star-formation at z<1.Comment: ApJ Letters, in pres
Extremely Red Objects in Two Quasar Fields at z ~ 1.5
We present an investigation of the properties and environments of bright
extremely red objects (EROs) found in the fields of the quasars TXS 0145+386
and 4C 15.55, both at z ~ 1.4. There is marginal evidence from Chandra ACIS
imaging for hot cluster gas with a luminosity of a few 10^44 ergs/s in the
field of 4C 15.55. The TXS 0145+386 field has an upper limit at a similar
value, but it also clearly shows an overdensity of faint galaxies. None of the
EROs are detected as X-ray sources. For two of the EROs that have
spectral-energy distributions and rest-frame near-UV spectra that show that
they are strongly dominated by old stellar populations, we determine
radial-surface-brightness profiles from adaptive-optics images. Both of these
galaxies are best fit by profiles close to exponentials, plus a compact nucleus
comprising ~30% of the total light in one case and 8% in the other. Neither is
well fit by an r^1/4-law profile. This apparent evidence for the formation of
massive ~2 X 10^11 disks of old stars in the early universe indicates that at
least some galaxies formed essentially monolithically, with high star-formation
rates sustained over a few 10^8 years, and without the aid of major mergers.Comment: 25 pages, 13 figures, accepted to Ap
- âŠ