5 research outputs found

    Processing 3D GeoInformation for Augmenting Georeferenced and Oriented Photographs with Text Labels

    No full text
    Online photo libraries face the problem of organizing their rapidly growing image collections. Fast and reliable image retrieval requires good qualitative captions added to a photo; however, this is considered by photographers as a time-consuming and annoying task. In order to do it in a fully automated way, the process of augmenting a photo with captions or labels starts by identifying the objects that the photo depicts. Previous attempts for a fully automatic process using computer vision technology only proved not to be optimal due to calibration issues. Existing photo annotation tools from GPS or geo-tagging services can only apply generic location information to add textual descriptions about the context and surroundings of the photo, not actually what the photo shows. To be able to exactly describe what is captured on a digital photo, the view orientation is required to exactly identify the captured scene extent and identify the features from existing spatial datasets that are within the extent. Assumption that camera devices with integrated GPS and digital compass will become available in the near future, our research introduces an approach to identify and localize captured objects on a digital photo using this full spatial metadata. It proposes the use of GIS technology and conventional spatial data sets to place a label next to a pictured object at its best possible location

    Breaking the Curse of Visual Analytics : Accommodating Virtual Reality in the Visualization Pipeline

    No full text
    Previous research has exposed the discrepancy between the subject of analysis (real world) and the actual data on which the analysis is performed (data world) as a critical weak spot in visual analysis pipelines. In this paper, we demonstrate how Virtual Reality (VR) can help to verify the correspondence of both worlds in the context of Information Visualization (InfoVis) and Visual Analytics (VA). Immersion allows the analyst to dive into the data world and collate it to familiar real-world scenarios. If the data world lacks crucial dimensions, then these are also missing in created virtual environments, which may draw the analyst’s attention to inconsistencies between the database and the subject of analysis. When situating VR in a generic visualization pipeline, we can confirm its basic equality compared to other mediums as well as possible benefits. To overcome the guarded stance of VR in InfoVis and VA, we present a structured analysis of arguments, exhibiting the circumstances that make VR a viable medium for visualizations. As a further contribution, we discuss how VR can aid in minimizing the gap between the data world and the real world and present a use case that demonstrates two solution approaches. Finally, we report on initial expert feedback attesting the applicability of our approach in a real-world scenario for crime scene investigation.publishe
    corecore