3 research outputs found
Semi-invariants of symmetric quivers of tame type
A symmetric quiver is a finite quiver without oriented cycles
equipped with a contravariant involution on . The involution allows us to define a nondegenerate bilinear form on
a representation $V$ of $Q$. We shall say that $V$ is orthogonal if is
symmetric and symplectic if is skew-symmetric. Moreover, we define an
action of products of classical groups on the space of orthogonal
representations and on the space of symplectic representations. So we prove
that if is a symmetric quiver of tame type then the rings of
semi-invariants for this action are spanned by the semi-invariants of
determinantal type and, when matrix defining is skew-symmetric, by
the Pfaffians . To prove it, moreover, we describe the symplectic and
orthogonal generic decomposition of a symmetric dimension vector