293 research outputs found

    Unexpected drop of dynamical heterogeneities in colloidal suspensions approaching the jamming transition

    Full text link
    As the glass (in molecular fluids\cite{Donth}) or the jamming (in colloids and grains\cite{LiuNature1998}) transitions are approached, the dynamics slow down dramatically with no marked structural changes. Dynamical heterogeneity (DH) plays a crucial role: structural relaxation occurs through correlated rearrangements of particle ``blobs'' of size ξ\xi\cite{WeeksScience2000,DauchotPRL2005,Glotzer,Ediger}. On approaching these transitions, ξ\xi grows in glass-formers\cite{Glotzer,Ediger}, colloids\cite{WeeksScience2000,BerthierScience2005}, and driven granular materials\cite{KeysNaturePhys2007} alike, strengthening the analogies between the glass and the jamming transitions. However, little is known yet on the behavior of DH very close to dynamical arrest. Here, we measure in colloids the maximum of a ``dynamical susceptibility'', χ\chi^*, whose growth is usually associated to that of ξ\xi\cite{LacevicPRE}. χ\chi^* initially increases with volume fraction ϕ\phi, as in\cite{KeysNaturePhys2007}, but strikingly drops dramatically very close to jamming. We show that this unexpected behavior results from the competition between the growth of ξ\xi and the reduced particle displacements associated with rearrangements in very dense suspensions, unveiling a richer-than-expected scenario.Comment: 1st version originally submitted to Nature Physics. See the Nature Physics website fro the final, published versio

    A large age for the pulsar B1757-24 from an upper limit on its proper motion

    Get PDF
    The "characteristic age" of a pulsar usually is considered to approximate its true age, but this assumption has led to some puzzling results, including the fact that many pulsars with small characteristic ages have no associated supernova remnants. The pulsar B1757-24 is located just beyond the edge of a supernova remnant; the properties of the system indicate that the pulsar was born at the centre of the remnant, but that it has subsequently overtaken the expanding blast-wave. With a characteristic age of 16,000 yr, this implies an expected proper motion by the pulsar of 63-80 milliarcsec per year. Here we report observations of the nebula surrounding the pulsar which limit its proper motion to less than 25 mas/yr, implying a minimum age of 39,000 yr. A more detailed analysis argues for a true age as great as 170,000 yr, significantly larger than the characteristic age. From this result and other discrepancies associated with pulsars, we conclude that characteristic ages seriously underestimate the true ages of pulsars

    Magnetism, FeS colloids, and Origins of Life

    Full text link
    A number of features of living systems: reversible interactions and weak bonds underlying motor-dynamics; gel-sol transitions; cellular connected fractal organization; asymmetry in interactions and organization; quantum coherent phenomena; to name some, can have a natural accounting via physicalphysical interactions, which we therefore seek to incorporate by expanding the horizons of `chemistry-only' approaches to the origins of life. It is suggested that the magnetic 'face' of the minerals from the inorganic world, recognized to have played a pivotal role in initiating Life, may throw light on some of these issues. A magnetic environment in the form of rocks in the Hadean Ocean could have enabled the accretion and therefore an ordered confinement of super-paramagnetic colloids within a structured phase. A moderate H-field can help magnetic nano-particles to not only overcome thermal fluctuations but also harness them. Such controlled dynamics brings in the possibility of accessing quantum effects, which together with frustrations in magnetic ordering and hysteresis (a natural mechanism for a primitive memory) could throw light on the birth of biological information which, as Abel argues, requires a combination of order and complexity. This scenario gains strength from observations of scale-free framboidal forms of the greigite mineral, with a magnetic basis of assembly. And greigite's metabolic potential plays a key role in the mound scenario of Russell and coworkers-an expansion of which is suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed Krishnaswami Alladi, Springer 201

    Linking a dermal permeation and an inhalation model to a simple pharmacokinetic model to study airborne exposure to di(n-butyl) phthalate

    Get PDF
    Six males clad only in shorts were exposed to high levels of airborne di(n-butyl) phthalate (DnBP) and diethyl phthalate (DEP) in chamber experiments conducted in 2014. In two 6 h sessions, the subjects were exposed only dermally while breathing clean air from a hood, and both dermally and via inhalation when exposed without a hood. Full urine samples were taken before, during, and for 48 h after leaving the chamber and measured for key DnBP and DEP metabolites. The data clearly demonstrated high levels of DnBP and DEP metabolite excretions while in the chamber and during the first 24 h once leaving the chamber under both conditions. The data for DnBP were used in a modeling exercise linking dose models for inhalation and transdermal permeation with a simple pharmacokinetic model that predicted timing and mass of metabolite excretions. These models were developed and calibrated independent of these experiments. Tests included modeling of the “hood-on” (transdermal penetration only), “hood-off” (both inhalation and transdermal) scenarios, and a derived “inhalation-only” scenario. Results showed that the linked model tended to duplicate the pattern of excretion with regard to timing of peaks, decline of concentrations over time, and the ratio of DnBP metabolites. However, the transdermal model tended to overpredict penetration of DnBP such that predictions of metabolite excretions were between 1.1 and 4.5 times higher than the cumulative excretion of DnBP metabolites over the 54 h of the simulation. A similar overprediction was not seen for the “inhalation-only” simulations. Possible explanations and model refinements for these overpredictions are discussed. In a demonstration of the linked model designed to characterize general population exposures to typical airborne indoor concentrations of DnBP in the United States, it was estimated that up to one-quarter of total exposures could be due to inhalation and dermal uptake

    Metabolic and Behavioral Compensations in Response to Caloric Restriction: Implications for the Maintenance of Weight Loss

    Get PDF
    BackgroundMetabolic and behavioral adaptations to caloric restriction (CR) in free-living conditions have not yet been objectively measured.Methodology and principal findingsForty-eight (36.8+/-1.0 y), overweight (BMI 27.8+/-0.7 kg/m(2)) participants were randomized to four groups for 6-months;Controlenergy intake at 100% of energy requirements; CR: 25% calorie restriction; CR+EX: 12.5% CR plus 12.5% increase in energy expenditure by structured exercise; LCD: low calorie diet (890 kcal/d) until 15% weight reduction followed by weight maintenance. Body composition (DXA) and total daily energy expenditure (TDEE) over 14-days by doubly labeled water (DLW) and activity related energy activity (AREE) were measured after 3 (M3) and 6 (M6) months of intervention. Weight changes at M6 were -1.0+/-1.1% (CONTROL), -10.4+/-0.9% (CR), -10.0+/-0.8% (CR+EX) and -13.9+/-0.8% (LCD). At M3, absolute TDEE was significantly reduced in CR (-454+/-76 kcal/d) and LCD (-633+/-66 kcal/d) but not in CR+EX or controls. At M6 the reduction in TDEE remained lower than baseline in CR (-316+/-118 kcal/d) and LCD (-389+/-124 kcal/d) but reached significance only when CR and LCD were combined (-351+/-83 kcal/d). In response to caloric restriction (CR/LCD combined), TDEE adjusted for body composition, was significantly lower by -431+/-51 and -240+/-83 kcal/d at M3 and M6, respectively, indicating a metabolic adaptation. Likewise, physical activity (TDEE adjusted for sleeping metabolic rate) was significantly reduced from baseline at both time points. For control and CR+EX, adjusted TDEE (body composition or sleeping metabolic rate) was not changed at either M3 or M6.ConclusionsFor the first time we show that in free-living conditions, CR results in a metabolic adaptation and a behavioral adaptation with decreased physical activity levels. These data also suggest potential mechanisms by which CR causes large inter-individual variability in the rates of weight loss and how exercise may influence weight loss and weight loss maintenance.Trial registrationClinicalTrials.gov NCT00099151.Leanne M. Redman, Leonie K. Heilbronn, Corby K. Martin, Lilian de Jonge, Donald A. Williamson, James P. Delany, Eric Ravussin, for the Pennington CALERIE tea

    The Complex and Important Cellular and Metabolic Functions of Saturated Fatty Acids

    Get PDF
    This review summarizes recent findings on the metabolism and biological functions of saturated fatty acids (SFA). Some of these findings show that SFA may have important and specific roles in the cells. Elucidated biochemical mechanisms like protein acylation (N-myristoylation, S-palmitoylation) and regulation of gene transcription are presented. In terms of physiology, SFA are involved for instance in lipogenesis, fat deposition, polyunsaturated fatty acids bioavailability and apoptosis. The variety of their functions demonstrates that SFA should no longer be considered as a single group
    corecore