9 research outputs found

    Proximity-dependent initiation of hybridization chain reaction

    Get PDF
    Sensitive detection of protein interactions and post-translational modifications of native proteins is a challenge for research and diagnostic purposes. A method for this, which could be used in point-of-care devices and high-throughput screening, should be reliable, cost effective and robust. To achieve this, here we design a method (proxHCR) that combines the need for proximal binding with hybridization chain reaction (HCR) for signal amplification. When two oligonucleotide hairpins conjugated to antibodies bind in close proximity, they can be activated to reveal an initiator sequence. This starts a chain reaction of hybridization events between a pair of fluorophore-labelled oligonucleotide hairpins, generating a fluorescent product. In conclusion, we show the applicability of the proxHCR method for the detection of protein interactions and posttranslational modifications in microscopy and flow cytometry. As no enzymes are needed, proxHCR may be an inexpensive and robust alternative to proximity ligation assays

    Bacterial Surface Appendages Strongly Impact Nanomechanical and Electrokinetic Properties of Escherichia coli Cells Subjected to Osmotic Stress

    Get PDF
    The physicochemical properties and dynamics of bacterial envelope, play a major role in bacterial activity. In this study, the morphological, nanomechanical and electrohydrodynamic properties of Escherichia coli K-12 mutant cells were thoroughly investigated as a function of bulk medium ionic strength using atomic force microscopy (AFM) and electrokinetics (electrophoresis). Bacteria were differing according to genetic alterations controlling the production of different surface appendages (short and rigid Ag43 adhesins, longer and more flexible type 1 fimbriae and F pilus). From the analysis of the spatially resolved force curves, it is shown that cells elasticity and turgor pressure are not only depending on bulk salt concentration but also on the presence/absence and nature of surface appendage. In 1 mM KNO3, cells without appendages or cells surrounded by Ag43 exhibit large Young moduli and turgor pressures (∼700–900 kPa and ∼100–300 kPa respectively). Under similar ionic strength condition, a dramatic ∼50% to ∼70% decrease of these nanomechanical parameters was evidenced for cells with appendages. Qualitatively, such dependence of nanomechanical behavior on surface organization remains when increasing medium salt content to 100 mM, even though, quantitatively, differences are marked to a much smaller extent. Additionally, for a given surface appendage, the magnitude of the nanomechanical parameters decreases significantly when increasing bulk salt concentration. This effect is ascribed to a bacterial exoosmotic water loss resulting in a combined contraction of bacterial cytoplasm together with an electrostatically-driven shrinkage of the surface appendages. The former process is demonstrated upon AFM analysis, while the latter, inaccessible upon AFM imaging, is inferred from electrophoretic data interpreted according to advanced soft particle electrokinetic theory. Altogether, AFM and electrokinetic results clearly demonstrate the intimate relationship between structure/flexibility and charge of bacterial envelope and propensity of bacterium and surface appendages to contract under hypertonic conditions

    The Genus Bdellovibrio

    Full text link

    Mechanisms of Action of EMFs on Biological Systems

    Full text link
    corecore