4,460 research outputs found
Climate change adaptation, flood risks and policy coherence in integrated water resources management in England
Integrated water resources management (IWRM) assumes coherence between cognate aspects of water governance at the river basin scale, for example water quality, energy production and agriculture objectives. But critics argue that IWRM is often less âintegratedâ in practice, raising concerns over inter-sectoral coherence between implementing institutions. One increasingly significant aspect of IWRM is adaptation to climate change-related risks, including threats from flooding, which are particularly salient in England. Although multiple institutional mechanisms exist for flood risk management (FRM), their coherence remains a critical question for national adaptation. This paper therefore (1) maps the multi-level institutional frameworks determining both IWRM and FRM in England; (2) examines their interaction via various inter-institutional coordinating mechanisms; and (3) assesses the degree of coherence. The analysis suggests that cognate EU strategic objectives for flood risk assessment demonstrate relatively high vertical and horizontal coherence with river basin planning. However, there is less coherence with flood risk requirements for land-use planning and national flood protection objectives. Overall, this complex governance arrangement actually demonstrates de-coherence over time due to ongoing institutional fragmentation. Recommendations for increasing IWRM coherence in England or re-coherence based on greater spatial planning and coordination of water-use and land-use strategies are proposed
Rich methane laminar flames doped with light unsaturated hydrocarbons. Part II: 1,3butadiene
In line with the study presented in the part I of this paper, the structure
of a laminar rich premixed methane flame doped with 1,3-butadiene has been
investigated. The flame contains 20.7% (molar) of methane, 31.4% of oxygen and
3.3% of 1,3-butadiene, corresponding to an equivalence ratio of 1.8, and a
ratio C4H6 / CH4 of 16 %. The flame has been stabilized on a burner at a
pressure of 6.7 kPa using argon as dilutant, with a gas velocity at the burner
of 36 cm/s at 333 K. The temperature ranged from 600 K close to the burner up
to 2150 K. Quantified species included usual methane C0-C2 combustion products
and 1,3-butadiene, but also propyne, allene, propene, propane, 1,2-butadiene,
butynes, vinylacetylene, diacetylene, 1,3-pentadiene, 2-methyl-1,3-butadiene
(isoprene), 1-pentene, 3-methyl-1-butene, benzene and toluene. In order to
model these new results, some improvements have been made to a mechanism
previously developed in our laboratory for the reactions of C3-C4 unsaturated
hydrocarbons. The main reaction pathways of consumption of 1,3-butadiene and of
formation of C6 aromatic species have been derived from flow rate analyses. In
this case, the C4 route to benzene formation plays an important role in
comparison to the C3 pathway
Measuring cluster peculiar velocities with the Sunyaev-Zeldovich effects: scaling relations and systematics
The fluctuations in the Cosmic Microwave Background (CMB) intensity due to
the Sunyaev-Zeldovich (SZ) effect are the sum of a thermal and a kinetic
contribution. Separating the two components to measure the peculiar velocity of
galaxy clusters requires radio and microwave observations at three or more
frequencies, and knowledge of the temperature T_e of the intracluster medium
weighted by the electron number density. To quantify the systematics of this
procedure, we extract a sample of 117 massive clusters at redshift z=0 from an
N-body hydrodynamical simulation, with 2x480^3 particles, of a cosmological
volume 192 Mpc/h on a side of a flat Cold Dark Matter model with Omega_0=0.3
and Lambda=0.7. Our simulation includes radiative cooling, star formation and
the effect of feedback and galactic winds from supernovae. We find that (1) our
simulated clusters reproduce the observed scaling relations between X-ray and
SZ properties; (2) bulk flows internal to the intracluster medium affect the
velocity estimate by less than 200 km/s in 93 per cent of the cases; (3) using
the X-ray emission weighted temperature, as an estimate of T_e, can
overestimate the peculiar velocity by 20-50 per cent, if the microwave
observations do not spatially resolve the cluster. For spatially resolved
clusters, the assumptions on the spatial distribution of the ICM, required to
separate the two SZ components, still produce a velocity overestimate of 10-20
per cent, even with an unbiased measure of T_e. Thanks to the large size of our
cluster samples, these results set a robust lower limit of 200 km/s to the
systematic errors that will affect upcoming measures of cluster peculiar
velocities with the SZ effect.Comment: 14 pages, 12 figures, MNRAS, in press. Figures 3 and 4 now contain
more recent observational data. Other minor revisions according to referee's
comment
XMM-Newton detection of two clusters of galaxies with strong SPT Sunyaev-Zel'dovich effect signatures
We report on the discovery of two galaxy clusters, SPT-CL J2332-5358 and
SPT-CL J2342-5411, in X-rays. These clusters were also independently detected
through their Sunyaev-Zel'dovich effect by the South Pole Telescope, and
confirmed in the optical band by the Blanco Cosmology Survey. They are thus the
first clusters detected under survey conditions by all major cluster search
approaches. The X-ray detection is made within the frame of the XMM-BCS cluster
survey utilizing a novel XMM-Newton mosaic mode of observations. The present
study makes the first scientific use of this operation mode. We estimate the
X-ray spectroscopic temperature of SPT-CL J2332-5358 (at redshift z=0.32) to T
= 9.3 (+3.3/-1.9) keV, implying a high mass, M_{500} = 8.8 +/- 3.8 \times
10^{14} M_{sun}. For SPT-CL J2342-5411, at z=1.08, the available X-ray data
doesn't allow us to directly estimate the temperature with good confidence.
However, using our measured luminosity and scaling relations we estimate that T
= 4.5 +/- 1.3 keV and M_{500} = 1.9 +/- 0.8 \times 10^{14} M_{sun}. We find a
good agreement between the X-ray masses and those estimated from the
Sunyaev-Zel'dovich effect.Comment: Submitted to A&A, 8 pages, 5 figures, 1 tabl
A Comparative Study of the Formation of Aromatics in Rich Methane Flames Doped by Unsaturated Compounds
For a better modeling of the importance of the different channels leading to
the first aromatic ring, we have compared the structures of laminar rich
premixed methane flames doped with several unsaturated hydrocarbons: allene and
propyne, because they are precursors of propargyl radicals which are well known
as having an important role in forming benzene, 1,3-butadiene to put in
evidence a possible production of benzene due to reactions of C4 compounds,
and, finally, cyclopentene which is a source of cyclopentadienylmethylene
radicals which in turn are expected to easily isomerizes to give benzene. These
flames have been stabilized on a burner at a pressure of 6.7 kPa (50 Torr)
using argon as dilutant, for equivalence ratios (?) from 1.55 to 1.79. A unique
mechanism, including the formation and decomposition of benzene and toluene,
has been used to model the oxidation of allene, propyne, 1,3 butadiene and
cyclopentene. The main reaction pathways of aromatics formation have been
derived from reaction rate and sensitivity analyses and have been compared for
the three types of additives. These combined analyses and comparisons can only
been performed when a unique mechanism is available for all the studied
additives
Hydrodynamical simulations of the SunyaevâZel'dovich effect: the kinetic effect
We use hydrodynamical N-body simulations to study the kinetic SunyaevâZel'dovich effect. We construct sets of maps, one square degree in size, in three different cosmological models. We confirm earlier calculations that on the scales studied the kinetic effect is much smaller than the thermal (except close to the thermal null point), with an rms dispersion smaller by about a factor of 5 in the RayleighâJeans region. We study the redshift dependence of the rms distortion and the pixel distribution at the present epoch. We compute the angular power spectra of the maps, including their redshift dependence, and compare them with the thermal SunyaevâZel'dovich effect and with the expected cosmic microwave background anisotropy spectrum as well as with determinations by other authors. We correlate the kinetic effect with the thermal effect both pixel-by-pixel and for identified thermal sources in the maps to assess the extent to which the kinetic effect is enhanced in locations of strong thermal signal
Phase Transitions of Charged Scalars at Finite Temperature and Chemical Potential
We calculate the grand canonical partition function at the one-loop level for
scalar quantum electrodynamics at finite temperature and chemical potential. A
classical background charge density with a charge opposite that of the scalars
ensures the neutrality of the system. For low density systems we find evidence
of a first order phase transition. We find upper and lower bounds on the
transition temperature below which the charged scalars form a condensate. A
first order phase transition may have consequences for helium-core white dwarf
stars in which it has been argued that such a condensate of charged helium-4
nuclei could exist.Comment: 20 pages, 3 figures. Version accepted for publication in JHE
Effects of interactions between anthropogenic stressors and recurring perturbations on ecosystem resilience and collapse
Insights into declines in ecosystem resilience and their causes and effects can inform preemptive action to avoid ecosystem collapse and loss of biodiversity, ecosystem services, and human well-being. Empirical studies of ecosystem collapse are rare and hampered by ecosystem complexity, nonlinear and lagged responses, and interactions across scales. We investigated how an anthropogenic stressor could diminish ecosystem resilience to a recurring perturbation by altering a critical ecosystem driver. We studied groundwater-dependent, peat-accumulating, fire-prone wetlands known as upland swamps in southeastern Australia. We hypothesized that underground mining (stressor) reduces resilience of these wetlands to landscape fires (perturbation) by diminishing groundwater, a key ecosystem driver. We monitored soil moisture as an indicator of ecosystem resilience during and after underground mining. After landscape fire, we compared responses of multiple state variables representing ecosystem structure, composition, and function in swamps within the mining footprint with unmined reference swamps. Soil moisture declined without recovery in swamps with mine subsidence (i.e., undermined), but was maintained in reference swamps over 8 years (effect size 1.8). Relative to burned reference swamps, burned undermined swamps showed greater loss of peat via substrate combustion; reduced cover, height, and biomass of regenerating vegetation; reduced postfire plant species richness and abundance; altered plant species composition; increased mortality rates of woody plants; reduced postfire seedling recruitment; and extirpation of a hydrophilic animal. Undermined swamps therefore showed strong symptoms of postfire ecosystem collapse, whereas reference swamps regenerated vigorously. We found that an anthropogenic stressor diminished the resilience of an ecosystem to recurring perturbations, predisposing it to collapse. Avoidance of ecosystem collapse hinges on early diagnosis of mechanisms and preventative risk reduction. It may be possible to delay or ameliorate symptoms of collapse or to restore resilience, but the latter appears unlikely in our study system due to fundamental alteration of a critical ecosystem driver. Efectos de las interacciones entre los estresantes antropogénicos y las perturbaciones recurrentes sobre la resiliencia y el colapso de los ecosistemas
Cosmological constraints from a 2D SZ catalog
We perform a Fisher matrix analysis to quantify cosmological constraints
obtainable from a 2-dimensional Sunyaev-Zel'dovich (SZ) cluster catalog using
the counts and the angular correlation function. Three kinds of SZ survey are
considered: the almost all-sky Planck survey and two deeper ground-based
surveys, one with 10% sky coverage, the other one with a coverage of 250 square
degrees. With the counts and angular function, and adding the constraint from
the local X-ray cluster temperature function, joint 10% to 30% errors (1 sigma)
are achievable on the cosmological parameter pair (sigma_8, Omega_m) in the
flat concordance model. Constraints from a 2D distribution remain relatively
robust to uncertainties in possible cluster gas evolution for the case of
Planck. Alternatively, we examine constraints on cluster gas physics when
assuming priors on the cosmological parameters (e.g., from cosmic microwave
background anisotropies and SNIa data), finding a poor ability to constrain gas
evolution with the 2-dimensional catalog. From just the SZ counts and angular
correlation function we obtain, however, a constraint on the product between
the present-day cluster gas mass fraction and the normalization of the
mass-temperature relation, T_*, with a precision of 15%. This is particularly
interesting because it would be based on a very large catalog and is
independent of any X-ray data.Comment: 9 pages, 4 figures, A&A in pres
- âŠ