34 research outputs found

    Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model

    Get PDF
    It recently has been demonstrated that magnetic resonance imaging can be used to map changes in brain hemodynamics produced by human mental operations. One method under development relies on blood oxygenation level-dependent (BOLD) contrast: a change in the signal strength of brain water protons produced by the paramagnetic effects of venous blood deoxyhemoglobin. Here we discuss the basic quantitative features of the observed BOLD-based signal changes, including the signal amplitude and its magnetic field dependence and dynamic effects such as a pronounced oscillatory pattern that is induced in the signal from primary visual cortex during photic stimulation experiments. The observed features are compared with the results of Monte Carlo simulations of water proton intravoxel phase dispersion produced by local field gradients generated by paramagnetic deoxyhemoglobin in nearby venous blood vessels. The simulations suggest that the effect of water molecule diffusion is strong for the case of blood capillaries, but, for larger venous blood vessels, water diffusion is not an important determinant of deoxyhemoglobin-induced signal dephasing. We provide an expression for the apparent in-plane relaxation rate constant (R2*) in terms of the main magnetic field strength, the degree of the oxygenation of the venous blood, the venous blood volume fraction in the tissue, and the size of the blood vessel

    Stability and Nuclear Dynamics of the Bicoid Morphogen Gradient

    Get PDF
    SummaryPatterning in multicellular organisms results from spatial gradients in morphogen concentration, but the dynamics of these gradients remain largely unexplored. We characterize, through in vivo optical imaging, the development and stability of the Bicoid morphogen gradient in Drosophila embryos that express a Bicoid-eGFP fusion protein. The gradient is established rapidly (∼1 hr after fertilization), with nuclear Bicoid concentration rising and falling during mitosis. Interphase levels result from a rapid equilibrium between Bicoid uptake and removal. Initial interphase concentration in nuclei in successive cycles is constant (±10%), demonstrating a form of gradient stability, but it subsequently decays by approximately 30%. Both direct photobleaching measurements and indirect estimates of Bicoid-eGFP diffusion constants (D ≤ 1 μm2/s) provide a consistent picture of Bicoid transport on short (∼min) time scales but challenge traditional models of long-range gradient formation. A new model is presented emphasizing the possible role of nuclear dynamics in shaping and scaling the gradient

    Widespread state-dependent shifts in cerebellar activity in locomoting mice.

    Get PDF
    Excitatory drive enters the cerebellum via mossy fibers, which activate granule cells, and climbing fibers, which activate Purkinje cell dendrites. Until now, the coordinated regulation of these pathways has gone unmonitored in spatially resolved neuronal ensembles, especially in awake animals. We imaged cerebellar activity using functional two-photon microscopy and extracellular recording in awake mice locomoting on an air-cushioned spherical treadmill. We recorded from putative granule cells, molecular layer interneurons, and Purkinje cell dendrites in zone A of lobule IV/V, representing sensation and movement from trunk and limbs. Locomotion was associated with widespread increased activity in granule cells and interneurons, consistent with an increase in mossy fiber drive. At the same time, dendrites of different Purkinje cells showed increased co-activation, reflecting increased synchrony of climbing fiber activity. In resting animals, aversive stimuli triggered increased activity in granule cells and interneurons, as well as increased Purkinje cell co-activation that was strongest for neighboring dendrites and decreased smoothly as a function of mediolateral distance. In contrast with anesthetized recordings, no 1-10 Hz oscillations in climbing fiber activity were evident. Once locomotion began, responses to external stimuli in all three cell types were strongly suppressed. Thus climbing and mossy fiber representations can shift together within a fraction of a second, reflecting in turn either movement-associated activity or external stimuli

    A Modified Hopfield Network for Nonlinear Programming Problem Solving

    No full text
    corecore