831 research outputs found
The early medieval origin of Perth, Scotland
The radiocarbon results (and Bayesian modeling) of 15 samples of carbonized food residues removed from the external surface of rim sherds of cooking pots indicate that shellyware pottery first appeared in Perth, Scotland, around cal AD 9101020 (95% probability) and that it had disappeared by cal AD 10201140 (95% probability). Previously, it had been suggested that this pottery could not date to before AD 1150. These data, together with 14C analyses carried out on leather artifacts and a sample of wattle from a ditch lining, also demonstrate that there was occupation in Perth about 100 yr or more prior to the granting of royal burgh status to Perth in the 1120s
Recommended from our members
FRACTIONAL CRYSTALLIZATION OF HANFORD SINGLE SHELL TANK (SST) WASTES A MODELING APPROACH
The Hanford site has 149 underground single-shell tanks (SST) storing mostly soluble, multi-salt, mixed wastes resulting from Cold War era weapons material production. These wastes must be retrieved and the salts immobilized before the tanks can be closed to comply with an overall site closure consent order entered into by the U.S. Department of Energy (DOE), the Environmental Protection Agency, and Washington State. Water will be used to retrieve the wastes and the resulting solution will be pumped to the proposed treatment process where a high curie (primarily {sup 137}Cs) waste fraction will be separated from the other waste constituents. The separated waste streams will then be vitrified to allow for safe storage as an immobilized high level waste, or low level waste, borosilicate glass. Fractional crystallization, a common unit operation for production of industrial chemicals and pharmaceuticals, was proposed as the method to separate the salt wastes; it works by evaporating excess water until the solubilities of various species in the solution are exceeded (the solubility of a particular species depends on its concentration, temperature of the solution, and the presence of other ionic species in the solution). By establishing the proper conditions, selected pure salts can be crystallized and separated from the radioactive liquid phase
Factors affecting zinc uptake in cropping systems
Zinc availabilities can change with different cropping management
practices. The objective of this study was to identify some of the causative
factors associated with previous crops contributing to Zn uptake
differences in a subsequent crop. Field studies over 3 yr evaluated the
Zn availability after four precropping treatments: bean (Phaseolus
vulgaris L.), corn (Zea mays L.), wheat (Triticum aestivum L.), and
fallow, across two Zn fertilization rates (with and without 11 kg Zn
ha-1 as ZnSO4), using the 'Viva' bean as a test crop. Soil samples
taken before and after the test crop were analyzed for extractable P,
Zn, Cu, Mn, and Fe, and organic matter. Soil respiration during the
test crop was periodically estimated the last cropping year. Whole
plant samples estimated nutrient concentration and uptake. Soil Zn
extracted by diethylenetriaminepentaacetic acid (DTPA) was increased
by Zn fertilization but not affected by precropping treatments.
Zinc uptake by bean was significantly higher after precropping with
corn and lower after fallow regardless of Zn fertilization. Uptake
differences were most pronounced during early plant growth. Phosphorus
and Cu uptake varied with treatment in a similar pattern as
Zn uptake, and were positively correlated with each other. Zinc uptake
was also positively correlated with soil organic matter and negatively
correlated with soil P. Soil respiration rate was significantly
lower after the fallow treatment compared with other precropping
treatments. Vesicular-arbuscular mycorrhiza (VAM) colonization in
the test crop roots was higher after corn and lower after fallow regardless
of soil Zn concentrations. Colonization was positively correlated
with Zn, P, and Cu uptake during early plant growth. The
VAM colonization, soil respiration, and DTPA-extractable Zn were
selected by a stepwise regression procedure as the important variables
affecting Zn uptake during early plant growth. These results emphasize
the importance of the soil's biological activities on Zn availability
and may help explain some field observations where chemical soil tests
appear to fail
Electric current circuits in astrophysics
Cosmic magnetic structures have in common that they are anchored
in a dynamo, that an external driver converts kinetic energy into internal
magnetic energy, that this magnetic energy is transported as Poynting fl ux across the magnetically dominated structure, and that the magnetic energy
is released in the form of particle acceleration, heating, bulk motion,
MHD waves, and radiation. The investigation of the electric current system is
particularly illuminating as to the course of events and the physics involved.
We demonstrate this for the radio pulsar wind, the solar flare, and terrestrial
magnetic storms
Cosmological parameters from SDSS and WMAP
We measure cosmological parameters using the three-dimensional power spectrum
P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in
combination with WMAP and other data. Our results are consistent with a
``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt,
tensor modes or massive neutrinos. Adding SDSS information more than halves the
WMAP-only error bars on some parameters, tightening 1 sigma constraints on the
Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter
density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on
neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when
dropping prior assumptions about curvature, neutrinos, tensor modes and the
equation of state. Our results are in substantial agreement with the joint
analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive
consistency check with independent redshift survey data and analysis
techniques. In this paper, we place particular emphasis on clarifying the
physical origin of the constraints, i.e., what we do and do not know when using
different data sets and prior assumptions. For instance, dropping the
assumption that space is perfectly flat, the WMAP-only constraint on the
measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to
t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running
tilt, neutrino mass and equation of state in the list of free parameters, many
constraints are still quite weak, but future cosmological measurements from
SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt
figures available at http://www.hep.upenn.edu/~max/sdsspars.htm
Revealing microscale bulk structures in polymer–carbon nanocomposites using spin-echo SANS
We have used spin-echo small-angle neutron scattering (SESANS) to probe the hierarchy of structures present in polymer–carbon nanocomposites, with length scales spanning over three orders of magnitude, from 10 nm to 16 μm. The data processing and reduction show a unified approach across two SESANS instruments (TU Delft and Larmor at the ISIS neutron source) and yield consistent data that are able to be modelled using well-established hierarchical models in freely available software such as SasView. Using this approach, we are able to extend the measured length scales by over an order of magnitude compared to traditional scattering methods. This yields information about the structure in the bulk that is inaccessible with conventional scattering techniques (SANS/SAXS) and points to a way for interrogating and investigating polymer nanocomposites routinely across multiple length scales
A Model for the Development of the Rhizobial and Arbuscular Mycorrhizal Symbioses in Legumes and Its Use to Understand the Roles of Ethylene in the Establishment of these two Symbioses
We propose a model depicting the development of nodulation and arbuscular mycorrhizae. Both processes are dissected into many steps, using Pisum sativum L. nodulation mutants as a guideline. For nodulation, we distinguish two main developmental programs, one epidermal and one cortical. Whereas Nod factors alone affect the cortical program, bacteria are required to trigger the epidermal events. We propose that the two programs of the rhizobial symbiosis evolved separately and that, over time, they came to function together. The distinction between these two programs does not exist for arbuscular mycorrhizae development despite events occurring in both root tissues. Mutations that affect both symbioses are restricted to the epidermal program. We propose here sites of action and potential roles for ethylene during the formation of the two symbioses with a specific hypothesis for nodule organogenesis. Assuming the epidermis does not make ethylene, the microsymbionts probably first encounter a regulatory level of ethylene at the epidermis–outermost cortical cell layer interface. Depending on the hormone concentrations there, infection will either progress or be blocked. In the former case, ethylene affects the cortex cytoskeleton, allowing reorganization that facilitates infection; in the latter case, ethylene acts on several enzymes that interfere with infection thread growth, causing it to abort. Throughout this review, the difficulty of generalizing the roles of ethylene is emphasized and numerous examples are given to demonstrate the diversity that exists in plants
Recent Advances in Understanding Particle Acceleration Processes in Solar Flares
We review basic theoretical concepts in particle acceleration, with
particular emphasis on processes likely to occur in regions of magnetic
reconnection. Several new developments are discussed, including detailed
studies of reconnection in three-dimensional magnetic field configurations
(e.g., current sheets, collapsing traps, separatrix regions) and stochastic
acceleration in a turbulent environment. Fluid, test-particle, and
particle-in-cell approaches are used and results compared. While these studies
show considerable promise in accounting for the various observational
manifestations of solar flares, they are limited by a number of factors, mostly
relating to available computational power. Not the least of these issues is the
need to explicitly incorporate the electrodynamic feedback of the accelerated
particles themselves on the environment in which they are accelerated. A brief
prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares,
inspired by RHESSI observations. The individual articles are to appear in
Space Science Reviews (2011
Liste alphabétique des titres
In the last years many populations of anurans have declined and extinctions have been recorded. They were related to environmental pollution, changes of land use and emerging diseases. The main objective of this study was to determine copper sensitivity of the anuran of the Amazon Rhinella granulosa and Scinax ruber tadpoles at stage 25 and Scinax ruber eggs exposed for 96 h to copper concentrations ranging from 15 µg Cu L-1 to 94 µg Cu L-1. LC50 at 96 h of Rhinella granulosa Gosner 25, Scinax ruber Gosner 25 and Scinax ruber eggs in black water of the Amazon were 23.48, 36.37 and 50.02 µg Cu L-1, respectively. The Biotic Ligand Model was used to predict the LC50 values for these species and it can be considered a promising tool for these tropical species and water conditions. Copper toxicity depends on water physical-chemical composition and on the larval stage of the tadpoles. The Gosner stage 19-21 (related to the appearance of external gills) is the most vulnerable and the egg stage is the most resistant. In case of contamination by copper, the natural streams must have special attention, since copper is more bioavailable.Nos últimos anos foram registrados muitas extinções e declínios de populações de anuros. Eles estavam relacionados com a poluição do ambiente, a mudanças no uso da terra e ao surgimento de doenças. O principal objetivo deste estudo foi determinar a sensibilidade dos anuros amazônicos ao cobre. Os girinos de Scinax ruber e Rhinella granulosa no estadio 25 e os ovos de Scinax ruber foram expostos por 96 horas a concentrações de cobre entre 15 µg Cu L-1 a 94 µg Cu L-1. A CL50 -96 h dos girinos de Rhinella granulosa, dos girinos de Scinax ruber e dos ovos de Scinax ruber em águas pretas da Amazônia foram 23,48; 36,37 e 50,02 µg Cu L-1, respectivamente. O modelo do ligante biótico foi usado para prever os valores de CL50 para essas duas espécies e pode ser considerado uma ferramenta promissora para essas espécies tropicais e para essas condições de água. A Toxicidade de cobre depende da composição físico-química da água e do estagio larval dos girinos. O estadio 19-21 de Gosner (relacionados ao aparecimento das brânquias externas) são os mais vulnerável e o estagio de ovo é o mais resistente. Em caso de contaminação por cobre, os igarapés naturais devem ter uma atenção especial, uma vez que o cobre é mais biodisponível nesse ambiente
- …