14 research outputs found

    PRELIMINARY SOLUTION CRITICAL EXPERIMENTS FOR THE HIGH-FLUX ISOTOPE REACTOR

    Full text link
    The design of the High-Flux Isotope Reactor (HFIR) was supported by a series of preliminary experiments performed at the Oak Ridge Critical Experiments Facility in 1960. The experiments yielded results describing directly some of the expected performance characteristics of the reactor and strengthened the calculational methods used in its design. The critical assembly, like the reactor, was of a flux-trap type in which a central 6-in.-dia column of H/sub 2/O was surrounded by an annulus of fissile material and, in turn, by an annular neutron reflector. The fuel region contained a solution of enriched uranyl nitrate in a mixture of H/sub 2/O and D/sub 2/O and the reflector was a composite of two annuli, the inner one of D/sub 2/O surrounded by one of H/sub 2/O. In most experiments the ends of the assembly were reflected by H/sub 2/O. Important results evaluate the absolute thermal-neutron flux to be expected in the design reactor and describe the flux distributions within this type of assembly. It was also observed that the cadmium ratio along the axis of the assembly was about 100, showing that a highly thermal-neutron flux was truly developed in the trap. It was shown that reduction of the hydrogen density in the central water column to about 80% of its normal value increased the reactivity about 6% and that further hydrogen density reduction decreased the reactivity as the effect of the loss of neutron moderation dominated the effect of the increased coupling across the central column. These considerations are of importance to the safety of the reactor. Additional experiments gave values of the usual critical dimensions and explored the effects on both the dimensions and the flux distributions of changing the concentration of the uranyl nitrate solution, of changing the composition of the solvent, and of adding neutron-absorbing materials to the D/ sub 2/O reflector. These changes were made to alter the neutron properties of the fuel solution over a range including those expected in the reactor itself. (auth
    corecore