9 research outputs found

    Self-organized current transport through low angle grain boundaries in YBa2_2Cu3_3O7−δ_{7-\delta} thin films, studied magnetometrically

    Full text link
    The critical current density flowing across low angle grain boundaries in YBa2_2Cu3_3O7−δ_{7-\delta} thin films has been studied magnetometrically. Films (200 nm thickness) were deposited on SrTiO3_3 bicrystal substrates containing a single [001] tilt boundary, with angles of 2, 3, 5, and 7 degrees, and the films were patterned into rings. Their magnetic moments were measured in applied magnetic fields up to 30 kOe at temperatures of 5 - 95 K; current densities of rings with or without grain boundaries were obtained from a modified critical state model. For rings containing 5 and 7 degree boundaries, the magnetic response depends strongly on the field history, which arises in large part from self-field effects acting on the grain boundary.Comment: 8 pages, including 7 figure

    A possible cooling effect in high temperature superconductors

    Full text link
    We show that an adiabatic increase of the supercurrent along a superconductor with lines of nodes of the order parameter on the Fermi surface can result in a cooling effect. The maximum cooling occurs if the supercurrent increases up to its critical value. The effect can also be observed in a mixed state of a bulk sample. An estimate of the energy dissipation shows that substantial cooling can be performed during a reasonable time even in the microkelvin regime.Comment: 5 pages, to appear in Phys. Rev.

    Influence of a low magnetic field on the thermal diffusivity of Bi-2212

    Full text link
    The thermal diffusivity of a Bi-2212 polycrystalline sample has been measured under a 1T magnetic field applied perpendicularly to the heat flux. The magnetic contribution to the heat carrier mean free path has been extracted and is found to behave as a simple power law. This behavior can be attributed to a percolation process of electrons in the vortex lattice created by the magnetic field.Comment: 10 pages, 3 figures; to be published in Phys. Rev.

    Substrate and Stabilization Effects on the Transport AC Losses in YBCO Coated Conductors

    No full text
    corecore