224 research outputs found
Electromagnetic Response of a Superconductor: Effect of Order Parameter Collective Modes
Effects of order parameter collective modes on electromagnetic response are
studied for a clean spin-triplet superconductor with orbital
symmetry, which has been proposed as a candidate pairing symmetry for
SrRuO. It is shown that the superconductor has
characteristic massive collective modes analogous to the clapping mode in the
A-phase of superfluid He. We discuss the contribution from the collective
modes to ultrasound attenuation and electromagnetic absorption. We show that in
the electromagnetic absorption spectrum the clapping mode gives rise to a
resonance peak well below the pair breaking frequency, while the ultrasound
attenuation is hardly influenced by the collective excitations.Comment: 4 pages RevTex, 1 eps figur
Properties of geopolymer binders prepared from milled pond ash
Alkali-activated materials were prepared from pond ash from the Darkhan city (Mongolia) thermal power station. This ash contains about 60 wt % X-ray amorphous material in addition to quartz, mullite, hematite and magnesioferrite, and presents significant storage problems since it is accumulating in large amounts and is a hazardous waste, containing 90-100 ppm of the heavy metals As, Pb and Cr, and about 800 ppm Sr. Alkali-activated materials synthesized from the as-received pond ash achieved compressive strengths of only 3.25 MPa. Reduction of the particle size by mechanical milling for up to 30 min progressively increases the compressive strength of the resulting alkali-activated geopolymer up to 15.4 MPa. Leaching tests indicate that the combination of milling and alkali treatment does not cause the release of the hazardous heavy metals from the product, making it suitable for construction applications. © 2017 CSIC
Spin glass overlap barriers in three and four dimensions
For the Edwards-Anderson Ising spin-glass model in three and four dimensions
(3d and 4d) we have performed high statistics Monte Carlo calculations of those
free-energy barriers which are visible in the probability density
of the Parisi overlap parameter . The calculations rely on the
recently introduced multi-overlap algorithm. In both dimensions, within the
limits of lattice sizes investigated, these barriers are found to be
non-self-averaging and the same is true for the autocorrelation times of our
algorithm. Further, we present evidence that barriers hidden in dominate
the canonical autocorrelation times.Comment: 20 pages, Latex, 12 Postscript figures, revised version to appear in
Phys. Rev.
Upper critical field calculations for the high critical temperature superconductors considering inhomogeneities
We perform calculations to obtain the curve of high temperature
superconductors (HTSC). We consider explicitly the fact that the HTSC possess
intrinsic inhomogeneities by taking into account a non uniform charge density
. The transition to a coherent superconducting phase at a critical
temperature corresponds to a percolation threshold among different
superconducting regions, each one characterized by a given .
Within this model we calculate the upper critical field by means of an
average linearized Ginzburg-Landau (GL) equation to take into account the
distribution of local superconducting temperatures . This
approach explains some of the anomalies associated with and why
several properties like the Meissner and Nernst effects are detected at
temperatures much higher than .Comment: Latex text, add reference
Upper critical field for underdoped high-T_c superconductors. Pseudogap and stripe--phase
We investigate the upper critical field in a stripe--phase and in the
presence of a phenomenological pseudogap. Our results indicate that the
formation of stripes affects the Landau orbits and results in an enhancement of
. On the other hand, phenomenologically introduced pseudogap leads to a
reduction of the upper critical field. This effect is of particular importance
when the magnitude of the gap is of the order of the superconducting transition
temperature. We have found that a suppression of the upper critical field takes
place also for the gap that originates from the charge--density waves.Comment: 7 pages, 5 figure
Fractionalization patterns in strongly correlated electron systems: Spin-charge separation and beyond
We discuss possible patterns of electron fractionalization in strongly
interacting electron systems. A popular possibility is one in which the charge
of the electron has been liberated from its Fermi statistics. Such a
fractionalized phase contains in it the seed of superconductivity. Another
possibility occurs when the spin of the electron, rather than its charge, is
liberated from its Fermi statistics. Such a phase contains in it the seed of
magnetism, rather than superconductivity. We consider models in which both of
these phases occur and study possible phase transitions between them. We
describe other fractionalized phases, distinct from these, in which fractions
of the electron themselves fractionalize, and discuss the topological
characterization of such phases. These ideas are illustrated with specific
models of p-wave superconductors, Kondo lattices, and coexistence between
d-wave superconductivity and antiferromagnetism.Comment: 28 pages, 11 fig
TEM-EELS study of low-friction superlattice TiAlN/VN coating: the wear mechanisms
A 20-50 nm thick tribofilm was generated on the worn surface of a multilayer coating TiAlN/VN after dry sliding test against an alumina counterpart. The tribofilm was characterized by applying analytical transmission electron microscopy techniques with emphasis on detailed electron energy loss spectrometry and energy loss near edge structure analysis. Pronounced oxygen in the tribofilm indicated a predominant tribo-oxidation wear. Structural changes in the inner-shell ionization edges of N, Ti and V suggested decomposition of nitride fragments
Spatially heterogeneous ages in glassy dynamics
We construct a framework for the study of fluctuations in the nonequilibrium
relaxation of glassy systems with and without quenched disorder. We study two
types of two-time local correlators with the aim of characterizing the
heterogeneous evolution: in one case we average the local correlators over
histories of the thermal noise, in the other case we simply coarse-grain the
local correlators. We explain why the former describe the fingerprint of
quenched disorder when it exists, while the latter are linked to noise-induced
mesoscopic fluctuations. We predict constraints on the pdfs of the fluctuations
of the coarse-grained quantities. We show that locally defined correlations and
responses are connected by a generalized local out-of-equilibrium
fluctuation-dissipation relation. We argue that large-size heterogeneities in
the age of the system survive in the long-time limit. The invariance of the
theory under reparametrizations of time underlies these results. We relate the
pdfs of local coarse-grained quantities and the theory of dynamic random
manifolds. We define a two-time dependent correlation length from the spatial
decay of the fluctuations in the two-time local functions. We present numerical
tests performed on disordered spin models in finite and infinite dimensions.
Finally, we explain how these ideas can be applied to the analysis of the
dynamics of other glassy systems that can be either spin models without
disorder or atomic and molecular glassy systems.Comment: 47 pages, 60 Fig
- …