22 research outputs found

    Characterization of optical properties and surface roughness profiles: The Casimir force between real materials

    Get PDF
    The Lifshitz theory provides a method to calculate the Casimir force between two flat plates if the frequency dependent dielectric function of the plates is known. In reality any plate is rough and its optical properties are known only to some degree. For high precision experiments the plates must be carefully characterized otherwise the experimental result cannot be compared with the theory or with other experiments. In this chapter we explain why optical properties of interacting materials are important for the Casimir force, how they can be measured, and how one can calculate the force using these properties. The surface roughness can be characterized, for example, with the atomic force microscope images. We introduce the main characteristics of a rough surface that can be extracted from these images, and explain how one can use them to calculate the roughness correction to the force. At small separations this correction becomes large as our experiments show. Finally we discuss the distance upon contact separating two rough surfaces, and explain the importance of this parameter for determination of the absolute separation between bodies.}Comment: 33 pages, 14 figures, to appear in Springer Lecture Notes in Physics, Volume on Casimir Physics, edited by Diego Dalvit, Peter Milonni, David Roberts, and Felipe da Ros

    Electronic and magnetic structure of CO on nickel clusters

    No full text

    LCAO-local-spin-density calculations for V2 and Mn2

    No full text

    Application of Topological Analysis of the Electron Localization Function to the Complexes of Molybdenum Carbide Nanoparticles with Unsaturated Hydrocarbons

    No full text
    The catalytic transformation of the heavy aromatics in bitumen into lighter components is the key to the upgrading and refining of the oil sands. To understand the chemical bonding in molybdenum carbide nanoparticle (MCNP) catalysts and the chemisorption bonds between the MCNPs and unsaturated hydrocarbons, the topological analysis of the electron localization function was applied to various MCNPs and the complexes of them with unsaturated hydrocarbons. For some of the smaller complexes comparisons are made with the Atoms-in-Molecules approach, including the calculation of delocalization indices. The results are interpreted in the Lewis bonding scheme. It was found that the Mo-C bonding can be highly ionic in cases like MoThe accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore