994 research outputs found
A Detailed Study of the Gluino Decay into the Third Generation Squarks at the CERN LHC
In supersymmetric models a gluino can decay into tb\tilde{\chi}^{\pm}_1
through a stop or a sbottom. The decay chain produces an edge structure in the
m_{tb} distribution. Monte Carlo simulation studies show that the end point and
the edge height would be measured at the CERN LHC by using a sideband
subtraction technique. The stop and sbottom masses as well as their decay
branching ratios are constrained by the measurement. We study interpretations
of the measurement in the minimal supergravity model. We also study the gluino
decay into tb and \tilde{\chi}^{\pm}_2 as well as the influence of the stop
left-right mixing on the m_{bb} distribution of the tagged events.Comment: revtex, 20 pages in PRD format, 35 eps file
Cosmic ray electrons and positrons from discrete stochastic sources
The distances that galactic cosmic ray electrons and positrons can travel are
severely limited by energy losses to at most a few kiloparsec, thereby
rendering the local spectrum very sensitive to the exact distribution of
sources in our galactic neighbourhood. However, due to our ignorance of the
exact source distribution, we can only predict the spectrum stochastically. We
argue that even in the case of a large number of sources the central limit
theorem is not applicable, but that the standard deviation for the flux from a
random source is divergent due to a long power law tail of the probability
density. Instead, we compute the expectation value and characterise the scatter
around it by quantiles of the probability density using a generalised central
limit theorem in a fully analytical way. The uncertainty band is asymmetric
about the expectation value and can become quite large for TeV energies. In
particular, the predicted local spectrum is marginally consistent with the
measurements by Fermi-LAT and HESS even without imposing spectral breaks or
cut-offs at source. We conclude that this uncertainty has to be properly
accounted for when predicting electron fluxes above a few hundred GeV from
astrophysical sources.Comment: 16 pages, 8 figures; references and clarifying comment added; to
appear in JCA
Efficient Recursion Method for Inverting Overlap Matrix
A new O(N) algorithm based on a recursion method, in which the computational
effort is proportional to the number of atoms N, is presented for calculating
the inverse of an overlap matrix which is needed in electronic structure
calculations with the the non-orthogonal localized basis set. This efficient
inverting method can be incorporated in several O(N) methods for
diagonalization of a generalized secular equation. By studying convergence
properties of the 1-norm of an error matrix for diamond and fcc Al, this method
is compared to three other O(N) methods (the divide method, Taylor expansion
method, and Hotelling's method) with regard to computational accuracy and
efficiency within the density functional theory. The test calculations show
that the new method is about one-hundred times faster than the divide method in
computational time to achieve the same convergence for both diamond and fcc Al,
while the Taylor expansion method and Hotelling's method suffer from numerical
instabilities in most cases.Comment: 17 pages and 4 figure
Generation of vortices and observation of Quantum Turbulence in an oscillating Bose-Einstein Condensate
We report on the experimental observation of vortex formation and production
of tangled vortex distribution in an atomic BEC of Rb-87 atoms submitted to an
external oscillatory perturbation. The oscillatory perturbations start by
exciting quadrupolar and scissors modes of the condensate. Then regular
vortices are observed finally evolving to a vortex tangle configuration. The
vortex tangle is a signature of the presence of a turbulent regime in the
cloud. We also show that this turbulent cloud has suppression of the aspect
ratio inversion typically observed in quantum degenerate bosonic gases during
free expansion.Comment: to appear in JLTP - QFS 200
Vortices and dynamics in trapped Bose-Einstein condensates
I review the basic physics of ultracold dilute trapped atomic gases, with
emphasis on Bose-Einstein condensation and quantized vortices. The hydrodynamic
form of the Gross-Pitaevskii equation (a nonlinear Schr{\"o}dinger equation)
illuminates the role of the density and the quantum-mechanical phase. One
unique feature of these experimental systems is the opportunity to study the
dynamics of vortices in real time, in contrast to typical experiments on
superfluid He. I discuss three specific examples (precession of single
vortices, motion of vortex dipoles, and Tkachenko oscillations of a vortex
array). Other unusual features include the study of quantum turbulence and the
behavior for rapid rotation, when the vortices form dense regular arrays.
Ultimately, the system is predicted to make a quantum phase transition to
various highly correlated many-body states (analogous to bosonic quantum Hall
states) that are not superfluid and do not have condensate wave functions. At
present, this transition remains elusive. Conceivably, laser-induced synthetic
vector potentials can serve to reach this intriguing phase transition.Comment: Accepted for publication in Journal of Low Temperature Physics,
conference proceedings: Symposia on Superfluids under Rotation (Lammi,
Finland, April 2010
Black hole solutions in F(R) gravity with conformal anomaly
In this paper, we consider theory instead of Einstein gravity
with conformal anomaly and look for its analytical solutions. Depending on the
free parameters, one may obtain both uncharged and charged solutions for some
classes of models. Calculation of Kretschmann scalar shows that there is
a singularity located at , which the geometry of uncharged (charged)
solution is corresponding to the Schwarzschild (Reissner-Nordstr\"om)
singularity. Further, we discuss the viability of our models in details. We
show that these models can be stable depending on their parameters and in
different epoches of the universe.Comment: 12 pages, one figur
Search for the decay in the momentum region
We have searched for the decay in the kinematic
region with pion momentum below the peak. One event was
observed, consistent with the background estimate of . This
implies an upper limit on
(90% C.L.), consistent with the recently measured branching ratio of
, obtained using the standard model
spectrum and the kinematic region above the peak. The
same data were used to search for , where is a weakly
interacting neutral particle or system of particles with .Comment: 4 pages, 2 figure
Apparatus for a Search for T-violating Muon Polarization in Stopped-Kaon Decays
The detector built at KEK to search for T-violating transverse muon
polarization in K+ --> pi0 mu+ nu (Kmu3) decay of stopped kaons is described.
Sensitivity to the transverse polarization component is obtained from
reconstruction of the decay plane by tracking the mu+ through a toroidal
spectrometer and detecting the pi0 in a segmented CsI(Tl) photon calorimeter.
The muon polarization was obtained from the decay positron asymmetry of muons
stopped in a polarimeter. The detector included features which minimized
systematic errors while maintaining high acceptance.Comment: 56 pages, 30 figures, submitted to NI
Dynamical mean-field approach to materials with strong electronic correlations
We review recent results on the properties of materials with correlated
electrons obtained within the LDA+DMFT approach, a combination of a
conventional band structure approach based on the local density approximation
(LDA) and the dynamical mean-field theory (DMFT). The application to four
outstanding problems in this field is discussed: (i) we compute the full
valence band structure of the charge-transfer insulator NiO by explicitly
including the p-d hybridization, (ii) we explain the origin for the
simultaneously occuring metal-insulator transition and collapse of the magnetic
moment in MnO and Fe2O3, (iii) we describe a novel GGA+DMFT scheme in terms of
plane-wave pseudopotentials which allows us to compute the orbital order and
cooperative Jahn-Teller distortion in KCuF3 and LaMnO3, and (iv) we provide a
general explanation for the appearance of kinks in the effective dispersion of
correlated electrons in systems with a pronounced three-peak spectral function
without having to resort to the coupling of electrons to bosonic excitations.
These results provide a considerable progress in the fully microscopic
investigations of correlated electron materials.Comment: 24 pages, 14 figures, final version, submitted to Eur. Phys. J. for
publication in the Special Topics volume "Cooperative Phenomena in Solids:
Metal-Insulator Transitions and Ordering of Microscopic Degrees of Freedom
- …