4,837 research outputs found
Parsimonious Kernel Fisher Discrimination
By applying recent results in optimization transfer, a new algorithm for kernel Fisher Discriminant Analysis is provided that makes use of a non-smooth penalty on the coefficients to provide a parsimonious solution. The algorithm is simple, easily programmed and is shown to perform as well as or better than a number of leading machine learning algorithms on a substantial benchmark. It is then applied to a set of extreme small-sample-size problems in virtual screening where it is found to be less accurate than a currently leading approach but is still comparable in a number of cases
BRST Treatment of the Bohr Collective Hamiltonian at High Spins
The BRST treatment of triaxial systems rotating at high spins is used to
solve perturbatively the -independent Bohr collective hamiltonian.Comment: 10 pages in LaTeX using Esp-LaTeX and Feynman package
Superconducting Coherence and the Helicity Modulus in Vortex Line Models
We show how commonly used models for vortex lines in three dimensional
superconductors can be modified to include k=0 excitations. We construct a
formula for the k=0 helicity modulus in terms of fluctuations in the projected
area of vortex loops. This gives a convenient criterion for the presence of
superconducting coherence. We also present Monte Carlo simulations of a
continuum vortex line model for the melting of the Abrikosov vortex lattice in
pure YBCO.Comment: 4 pages RevTeX, 2 eps figures included using eps
Interaction between electronic structure and strain in Bi nanolines on Si(001)
Heteroepitaxial strain can be a controlling factor in the lateral dimensions
of 1-D nanostructures. Bi nanolines on Si(001) have an atomic structure which
involves a large sub-surface reconstruction, resulting in a strong elastic
coupling to the surrounding silicon. We present variable-bias STM and first
principles electronic structure calculations of the Bi nanolines, which
investigates this interaction. We show that the strain associated with the
nanolines affects the atomic and electronic structure of at least two
neighbouring Si dimers, and identify the mechanism behind this. We also present
partial charge densities (projected by energy) for the nanoline with clean and
hydrogenated surroundings and contrast it to the clean Si(001) surface.Comment: 10 pages, 3 figures, submitted to Surface Scienc
Interstitials, Vacancies and Dislocations in Flux-Line Lattices: A Theory of Vortex Crystals, Supersolids and Liquids
We study a three dimensional Abrikosov vortex lattice in the presence of an
equilibrium concentration of vacancy, interstitial and dislocation loops.
Vacancies and interstitials renormalize the long-wavelength bulk and tilt
elastic moduli. Dislocation loops lead to the vanishing of the long-wavelength
shear modulus. The coupling to vacancies and interstitials - which are always
present in the liquid state - allows dislocations to relax stresses by climbing
out of their glide plane. Surprisingly, this mechanism does not yield any
further independent renormalization of the tilt and compressional moduli at
long wavelengths. The long wavelength properties of the resulting state are
formally identical to that of the ``flux-line hexatic'' that is a candidate
``normal'' hexatically ordered vortex liquid state.Comment: 21 RevTeX pgs, 7 eps figures uuencoded; corrected typos, published
versio
Fault-Tolerant Aggregation: Flow-Updating Meets Mass-Distribution
Flow-Updating (FU) is a fault-tolerant technique that has proved to be
efficient in practice for the distributed computation of aggregate functions in
communication networks where individual processors do not have access to global
information. Previous distributed aggregation protocols, based on repeated
sharing of input values (or mass) among processors, sometimes called
Mass-Distribution (MD) protocols, are not resilient to communication failures
(or message loss) because such failures yield a loss of mass. In this paper, we
present a protocol which we call Mass-Distribution with Flow-Updating (MDFU).
We obtain MDFU by applying FU techniques to classic MD. We analyze the
convergence time of MDFU showing that stochastic message loss produces low
overhead. This is the first convergence proof of an FU-based algorithm. We
evaluate MDFU experimentally, comparing it with previous MD and FU protocols,
and verifying the behavior predicted by the analysis. Finally, given that MDFU
incurs a fixed deviation proportional to the message-loss rate, we adjust the
accuracy of MDFU heuristically in a new protocol called MDFU with Linear
Prediction (MDFU-LP). The evaluation shows that both MDFU and MDFU-LP behave
very well in practice, even under high rates of message loss and even changing
the input values dynamically.Comment: 18 pages, 5 figures, To appear in OPODIS 201
A polarized beam splitter using an anisotropic medium slab
The propagation of electromagnetic waves in the anisotropic medium with a
single-sheeted hyperboloid dispersion relation is investigated. It is found
that in such an anisotropic medium E- and H-polarized waves have the same
dispersion relation, while E- and H-polarized waves exhibit opposite amphoteric
refraction characteristics. E- (or H-) polarized waves are positively refracted
whereas H- (or E-) polarized waves are negatively refracted at the interface
associated with the anisotropic medium. By suitably using the properties of
anomalous refraction in the anisotropic medium it is possible to realize a very
simple and very efficient beam splitter to route the light. It is shown that
the splitting angle and the splitting distance between E- and H- polarized beam
is the function of anisotropic parameters, incident angle and slab thickness.Comment: 14 pages, 6 figure
Two-Dimensional Diffusion in the Presence of Topological Disorder
How topological defects affect the dynamics of particles hopping between
lattice sites of a distorted, two-dimensional crystal is addressed.
Perturbation theory and numerical simulations show that weak, short-ranged
topological disorder leads to a finite reduction of the diffusion coefficient.
Renormalization group theory and numerical simulations suggest that
longer-ranged disorder, such as that from randomly placed dislocations or
random disclinations with no net disclinicity, leads to subdiffusion at long
times.Comment: 10 pages, 6 figure
Searching a bitstream in linear time for the longest substring of any given density
Given an arbitrary bitstream, we consider the problem of finding the longest
substring whose ratio of ones to zeroes equals a given value. The central
result of this paper is an algorithm that solves this problem in linear time.
The method involves (i) reformulating the problem as a constrained walk through
a sparse matrix, and then (ii) developing a data structure for this sparse
matrix that allows us to perform each step of the walk in amortised constant
time. We also give a linear time algorithm to find the longest substring whose
ratio of ones to zeroes is bounded below by a given value. Both problems have
practical relevance to cryptography and bioinformatics.Comment: 22 pages, 19 figures; v2: minor edits and enhancement
- …
