324 research outputs found
Effect of alloying elements on magnesium alloy damping capacities at room temperature
Alloying is a good approach to increasing its strength but leads to a reduction of damping to pure magnesium. Classifying the alloying characteristics of various alloying elements in magnesium alloys and their combined effects on the damping and mechanical properties of magnesium alloys is important. In this paper, the properties of the Mg-0.6wt%X binary alloys were analyzed through strength measurements and dynamic mechanical analysis. The effects of foreign atoms on solid-solution strengthening and dislocation damping were studied comprehensively. The effect of solid solubility on damping capacity can be considered from two perspectives: the effect of single solid-solution atoms on the damping capacities of the alloy, and the effect of solubility on the damping capacities of the alloy. The results provide significant information that is useful in developing high-strength, high-damping magnesium alloys. This study will provide scientific guidance regarding the development of new types of damping magnesium alloys
Co-infection with three mycoviruses stimulates growth of a Monilinia fructicola isolate on nutrient medium, but does not induce hypervirulence in a natural host
Monilinia fructicola and Monilinia laxa are the most destructive fungal species infecting stone fruit (Prunus species). High-throughput cDNA sequencing of M. laxa and M. fructicola isolates collected from stone fruit orchards revealed that 14% of isolates were infected with one or more of three mycoviruses: Sclerotinia sclerotiorum hypovirus 2 (SsHV2, genus Hypovirus), Fusarium poae virus 1 (FPV1, genus Betapartitivirus), and Botrytis virus F (BVF, genus Mycoflexivirus). Isolate M196 of M. fructicola was co-infected with all three viruses, and this isolate was studied further. Several methods were applied to cure M196 of one or more mycoviruses. Of these treatments, hyphal tip culture either alone or in combination with antibiotic treatment generated isogenic lines free of one or more mycoviruses. When isogenic fungal lines were cultured on nutrient agar medium in vitro, the triple mycovirus-infected parent isolate M196 grew 10% faster than any of the virus-cured isogenic lines. BVF had a slight inhibitory effect on growth, and FPV1 did not influence growth. Surprisingly, after inoculation to fruits of sweet cherry, there were no significance differences in disease progression between isogenic lines, suggesting that these mycoviruses did not influence the virulence of M. fructicola on a natural host
Neutron/proton ratio of nucleon emissions as a probe of neutron skin
The dependence between neutron-to-proton yield ratio () and neutron
skin thickness () in neutron-rich projectile induced reactions is
investigated within the framework of the Isospin-Dependent Quantum Molecular
Dynamics (IQMD) model. The density distribution of the Droplet model is
embedded in the initialization of the neutron and proton densities in the
present IQMD model. By adjusting the diffuseness parameter of neutron density
in the Droplet model for the projectile, the relationship between the neutron
skin thickness and the corresponding in the collisions is obtained.
The results show strong linear correlation between and
for neutron-rich Ca and Ni isotopes. It is suggested that may be used
as an experimental observable to extract for neutron-rich nuclei,
which is very significant to the study of the nuclear structure of exotic
nuclei and the equation of state (EOS) of asymmetric nuclear matter.Comment: 7 pages, 5 figures; accepted by Phys. Lett.
Recommended from our members
Separation science and technology
The focus of this project is the demonstration and advancement of membrane-based separation and destruction technologies. The authors are exploring development of membrane systems for gas separations, selective metal ion recovery, and for separation or destruction of hazardous organics. They evaluated existing polymers and polymer formulations for recovery of toxic oxyanionic metals such as chromate and arsenate from selected waste streams and developed second-generation water-soluble polymeric systems for highly selective oxyanion removal and recovery. They optimized the simultaneous removal of radioactive strontium and cesium from aqueous solutions using the new nonhazardous separations agents, and developed recyclable, redox-active extractants that permitted recovery of the radioactive ions into a minimal waste volume. They produced hollow fibers and fabricated prototype hollow-fiber membrane modules for applications to gas separations and the liquid-liquid extraction and recovery of actinides and nuclear materials from process streams. They developed and fabricated cyclodextrin-based microporous materials that selectively absorb organic compounds in an aqueous environment; the resultant products gave pure water with organics at less than 0.05 parts per billion. They developed new, more efficient, membrane-based electrochemical reactors for use in organic destruction in process waste treatment. They addressed the need for advanced oxidation technologies based on molecular-level materials designs that selectively remove or destroy target species. They prepared and characterized surface-modified TiO{sub 2} thin films using different linking approaches to attach ruthenium photosensitizers, and they started the measurement of the photo-degradation products generated using surface modified TiO{sub 2} films in reaction with chlorophenol
Nonparametric nonlinear model predictive control
Model Predictive Control (MPC) has recently found wide acceptance in industrial applications, but its potential has been much impeded by linear models due to the lack of a similarly accepted nonlinear modeling or databased technique. Aimed at solving this problem, the paper addresses three issues: (i) extending second-order Volterra nonlinear MPC (NMPC) to higher-order for improved prediction and control; (ii) formulating NMPC directly with plant data without needing for parametric modeling, which has hindered the progress of NMPC; and (iii) incorporating an error estimator directly in the formulation and hence eliminating the need for a nonlinear state observer. Following analysis of NMPC objectives and existing solutions, nonparametric NMPC is derived in discrete-time using multidimensional convolution between plant data and Volterra kernel measurements. This approach is validated against the benchmark van de Vusse nonlinear process control problem and is applied to an industrial polymerization process by using Volterra kernels of up to the third order. Results show that the nonparametric approach is very efficient and effective and considerably outperforms existing methods, while retaining the original data-based spirit and characteristics of linear MPC
Scientific Highlights of the HETE-2 Mission
The HETE-2 mission has been highly productive. It has observed more than 250
GRBs so far. It is currently localizing 25 - 30 GRBs per year, and has
localized 43 GRBs to date. Twenty-one of these localizations have led to the
detection of X-ray, optical, or radio afterglows, and as of now, 11 of the
bursts with afterglows have known redshifts. HETE-2 has confirmed the
connection between GRBs and Type Ic supernovae, a singular achievement and
certainly one of the scientific highlights of the mission so far. It has
provided evidence that the isotropic-equivalent energies and luminosities of
GRBs are correlated with redshift, implying that GRBs and their progenitors
evolve strongly with redshift. Both of these results have profound implications
for the nature of GRB progenitors and for the use of GRBs as a probe of
cosmology and the early universe. HETE-2 has placed severe constraints on any
X-ray or optical afterglow of a short GRB. It is also solving the mystery of
"optically dark' GRBs, and revealing the nature of X-ray flashes.Comment: 10 pages, 9 figures, to appear in proc. "The Restless High-Energy
Universe", Royal Tropical Institute, Amsterdam; revised text, added ref
Isospin Effects in Nuclear Multifragmentation
We develop an improved Statistical Multifragmentation Model that provides the
capability to calculate calorimetric and isotopic observables with precision.
With this new model we examine the influence of nuclear isospin on the fragment
elemental and isotopic distributions. We show that the proposed improvements on
the model are essential for studying isospin effects in nuclear
multifragmentation. In particular, these calculations show that accurate
comparisons to experimental data require that the nuclear masses, free energies
and secondary decay must be handled with higher precision than many current
models accord.Comment: 46 pages, 16 figure
- …