324 research outputs found

    Effect of alloying elements on magnesium alloy damping capacities at room temperature

    Get PDF
    Alloying is a good approach to increasing its strength but leads to a reduction of damping to pure magnesium. Classifying the alloying characteristics of various alloying elements in magnesium alloys and their combined effects on the damping and mechanical properties of magnesium alloys is important. In this paper, the properties of the Mg-0.6wt%X binary alloys were analyzed through strength measurements and dynamic mechanical analysis. The effects of foreign atoms on solid-solution strengthening and dislocation damping were studied comprehensively. The effect of solid solubility on damping capacity can be considered from two perspectives: the effect of single solid-solution atoms on the damping capacities of the alloy, and the effect of solubility on the damping capacities of the alloy. The results provide significant information that is useful in developing high-strength, high-damping magnesium alloys. This study will provide scientific guidance regarding the development of new types of damping magnesium alloys

    Co-infection with three mycoviruses stimulates growth of a Monilinia fructicola isolate on nutrient medium, but does not induce hypervirulence in a natural host

    Get PDF
    Monilinia fructicola and Monilinia laxa are the most destructive fungal species infecting stone fruit (Prunus species). High-throughput cDNA sequencing of M. laxa and M. fructicola isolates collected from stone fruit orchards revealed that 14% of isolates were infected with one or more of three mycoviruses: Sclerotinia sclerotiorum hypovirus 2 (SsHV2, genus Hypovirus), Fusarium poae virus 1 (FPV1, genus Betapartitivirus), and Botrytis virus F (BVF, genus Mycoflexivirus). Isolate M196 of M. fructicola was co-infected with all three viruses, and this isolate was studied further. Several methods were applied to cure M196 of one or more mycoviruses. Of these treatments, hyphal tip culture either alone or in combination with antibiotic treatment generated isogenic lines free of one or more mycoviruses. When isogenic fungal lines were cultured on nutrient agar medium in vitro, the triple mycovirus-infected parent isolate M196 grew 10% faster than any of the virus-cured isogenic lines. BVF had a slight inhibitory effect on growth, and FPV1 did not influence growth. Surprisingly, after inoculation to fruits of sweet cherry, there were no significance differences in disease progression between isogenic lines, suggesting that these mycoviruses did not influence the virulence of M. fructicola on a natural host

    Neutron/proton ratio of nucleon emissions as a probe of neutron skin

    Full text link
    The dependence between neutron-to-proton yield ratio (RnpR_{np}) and neutron skin thickness (δnp\delta_{np}) in neutron-rich projectile induced reactions is investigated within the framework of the Isospin-Dependent Quantum Molecular Dynamics (IQMD) model. The density distribution of the Droplet model is embedded in the initialization of the neutron and proton densities in the present IQMD model. By adjusting the diffuseness parameter of neutron density in the Droplet model for the projectile, the relationship between the neutron skin thickness and the corresponding RnpR_{np} in the collisions is obtained. The results show strong linear correlation between RnpR_{np} and δnp\delta_{np} for neutron-rich Ca and Ni isotopes. It is suggested that RnpR_{np} may be used as an experimental observable to extract δnp\delta_{np} for neutron-rich nuclei, which is very significant to the study of the nuclear structure of exotic nuclei and the equation of state (EOS) of asymmetric nuclear matter.Comment: 7 pages, 5 figures; accepted by Phys. Lett.

    Nonparametric nonlinear model predictive control

    Get PDF
    Model Predictive Control (MPC) has recently found wide acceptance in industrial applications, but its potential has been much impeded by linear models due to the lack of a similarly accepted nonlinear modeling or databased technique. Aimed at solving this problem, the paper addresses three issues: (i) extending second-order Volterra nonlinear MPC (NMPC) to higher-order for improved prediction and control; (ii) formulating NMPC directly with plant data without needing for parametric modeling, which has hindered the progress of NMPC; and (iii) incorporating an error estimator directly in the formulation and hence eliminating the need for a nonlinear state observer. Following analysis of NMPC objectives and existing solutions, nonparametric NMPC is derived in discrete-time using multidimensional convolution between plant data and Volterra kernel measurements. This approach is validated against the benchmark van de Vusse nonlinear process control problem and is applied to an industrial polymerization process by using Volterra kernels of up to the third order. Results show that the nonparametric approach is very efficient and effective and considerably outperforms existing methods, while retaining the original data-based spirit and characteristics of linear MPC

    Scientific Highlights of the HETE-2 Mission

    Full text link
    The HETE-2 mission has been highly productive. It has observed more than 250 GRBs so far. It is currently localizing 25 - 30 GRBs per year, and has localized 43 GRBs to date. Twenty-one of these localizations have led to the detection of X-ray, optical, or radio afterglows, and as of now, 11 of the bursts with afterglows have known redshifts. HETE-2 has confirmed the connection between GRBs and Type Ic supernovae, a singular achievement and certainly one of the scientific highlights of the mission so far. It has provided evidence that the isotropic-equivalent energies and luminosities of GRBs are correlated with redshift, implying that GRBs and their progenitors evolve strongly with redshift. Both of these results have profound implications for the nature of GRB progenitors and for the use of GRBs as a probe of cosmology and the early universe. HETE-2 has placed severe constraints on any X-ray or optical afterglow of a short GRB. It is also solving the mystery of "optically dark' GRBs, and revealing the nature of X-ray flashes.Comment: 10 pages, 9 figures, to appear in proc. "The Restless High-Energy Universe", Royal Tropical Institute, Amsterdam; revised text, added ref

    Isospin Effects in Nuclear Multifragmentation

    Full text link
    We develop an improved Statistical Multifragmentation Model that provides the capability to calculate calorimetric and isotopic observables with precision. With this new model we examine the influence of nuclear isospin on the fragment elemental and isotopic distributions. We show that the proposed improvements on the model are essential for studying isospin effects in nuclear multifragmentation. In particular, these calculations show that accurate comparisons to experimental data require that the nuclear masses, free energies and secondary decay must be handled with higher precision than many current models accord.Comment: 46 pages, 16 figure
    • …
    corecore