5 research outputs found

    Antioxidant defense in mitochondria during diapause and postdiapause development of European corn borer (Ostrinia nubilalis, Hubn.)

    No full text
    Antioxidant enzymes (CAT, catalase; GPx, selenium nondependent glutathione peroxidase; GST, glutathione-S-transferase; GR, glutathione reductase; DHAR, dehydroascorbate reductase) were determined in the mitochondria of diapausing and non-diapausing larvae and pupae of both diapausing and non-diapausing larvae of the European corn borer (Ostrinia nubilalis, Hubn., Lepidoptera: Pyralidae). CAT, GST, and DHAR activity in mitochondria of diapausing larvae were reduced compared to non-diapausing larvae. Pupae of diapaused-larvae possessed lower GST, but higher DHAR activities compared to pupae of non-diapaused individuals. Comparison between larvae and pupae revealed lower GPx activity in the mitochondria of pupae. CAT activity in the mitochondria of pupae was higher compared to diapausing larvae, but lower than in non-diapausing ones. Correlation and canonical discriminant analyses revealed different antioxidant enzyme compositions for a particular stage and developmental pattern. Our results show that antioxidant enzymes have a similar role in the regulation of energetics in mitochondria as that in diapause and metamorphosis

    Lea protein expression during cold-induced dehydration in the Arctic collembola Megaphorura arctica

    Get PDF
    The Arctic springtail Megaphorura arctica (Tullberg, 1876) employs a strategy known as cryoprotective dehydration to survive winter temperatures as low as -25Ā°C. During cryoprotective dehydration, water is lost from the animal to ice in its surroundings as a result of the difference in vapour pressure between the animalā€™s supercooled body fluids and ice (Worland et al., 1998; Holmstrup and Somme, 1998). This mechanism ensures that as the habitat temperature falls, the concentration of solutes remains high enough to prevent freezing (Holmstrup et al., 2002). In M. arctica, accumulation of trehalose, a cryo/anhydro protectant, occurs in parallel with dehydration. Recent studies have identified a number of genes and cellular processes involved in cryoprotective dehydration in M. arctica (Clark et al., 2007; Clark et al., 2009; Purać et al., 2011). One of them includes late embryogenesis abundant (LEA) proteins. This study, together with that of Bahrndorff et al. (2008), suggests that LEA proteins may be involved in protective dehydration in this species
    corecore