5 research outputs found

    Edge Waves Over a Shelf

    No full text
    The problem considered in this paper is the derivation of properties of edge waves travelling along a submerged horizontal shelf. The problem is formulated within the framework of the linearized theory of water waves and Havelock expansions of water wave potentials are used in the mathematical analysis to obtain the dispersion relation for edge waves in terms of an integral. Appropriate multi-term Galerkin approximations involving ultra spherical Gegenbauer polynomials are utilized to obtain a very accurate numerical estimate for the integral and hence to derive the properties of edge waves over a shelf. The numerical results are illustrated in a table and curves are presented showing the variation of frequency of the edge waves with the width of the shelf

    Edge Waves Over a Shelf

    No full text
    The problem considered in this paper is the derivation of properties of edge waves travelling along a submerged horizontal shelf. The problem is formulated within the framework of the linearized theory of water waves and Havelock expansions of water wave potentials are used in the mathematical analysis to obtain the dispersion relation for edge waves in terms of an integral. Appropriate multi-term Galerkin approximations involving ultra spherical Gegenbauer polynomials are utilized to obtain a very accurate numerical estimate for the integral and hence to derive the properties of edge waves over a shelf. The numerical results are illustrated in a table and curves are presented showing the variation of frequency of the edge waves with the width of the shelf

    Internal Wave Diffraction by a Strip of an Elastic Plate on the Surface of a Stratified Fluid

    No full text
    The problem of internal wave diffraction by a strip of an elastic plate of finite width present on the surface of an exponentially stratified liquid is investigated in this paper. Assuming linear theory, the problem is formulated in terms of a function related to the stream function describing the motion in the liquid. The related boundary value problem involves a hyperbolic type partial differential equation (PDE), known as the Klein Gordon equation. The method of Wiener-Hopf is utilized in the mathematical analysis to a slightly generalized boundary value problem (BVP) by introducing a small parameter, and the problem is solved approximately for large width of the plate. In the final results, this small parameter is made to tend to zero. The diffracted field is obtained in terms of integrals, which are then evaluated asymptotically in different regions for a large distance from the edges of the plate and the results are interpreted physically

    Scattering of Oblique Water Waves by an Infinite Step

    No full text
    The present paper is concerned with the problem of scattering of obliquely incident surface water wave train passing over a step bottom between the regions of finite and infinite depth. Havelock expansions of water wave potentials are used in the mathematical analysis to obtain the physical parameters reflection and transmission coefficients in terms of integrals. Appropriate multi-term Galerkin approximations involving ultra spherical Gegenbauer polynomials are utilized to obtain very accurate numerical estimates for reflection and transmission coefficients. The numerical results are illustrated in tables
    corecore