99 research outputs found

    Neutrino Detection With CLEAN

    Full text link
    This article describes CLEAN, an approach to the detection of low-energy solar neutrinos and neutrinos released from supernovae. The CLEAN concept is based on the detection of elastic scattering events (neutrino-electron scattering and neutrino-nuclear scattering) in liquified noble gases such as liquid helium, liquid neon, and liquid xenon, all of which scintillate brightly in the ultraviolet. Key to the CLEAN technique is the use of a thin film of wavelength-shifting fluor to convert the ultraviolet scintillation light to the visible. This allows the same liquid to be used as both a passive shielding medium and an active self-shielding detector, allowing lower intrinsic radioactive backgrounds at low energies. Liquid neon is a particularly promising medium for CLEAN. Because liquid neon has a high scintillation yield, has no long-lived radioactive isotopes, and can be easily purified by use of cold traps, it is an ideal medium for the detection of rare nuclear events. In addition, neon is inexpensive, dense, and transparent to its own scintillation light, making it practical for use in a large self-shielding apparatus. Monte Carlo simulations of gamma ray backgrounds have been performed assuming liquid neon as both shielding and detection medium. Gamma ray events occur with high probability in the outer parts of the detector. In contrast, neutrino scattering events occur uniformly throughout the detector. We discriminate background gamma ray events from events of interest based on a spatial Maximum Likelihood method estimate of event location. Background estimates for CLEAN are presented, as well as an evaluation of the sensitivity of the detector for p−pp-p neutrinos. Given these simulations, the physics potential of the CLEAN approach is evaluated.Comment: 21 pages, 3 figures. Submitted to Astroparticle Physic

    Probing neutrino masses with future galaxy redshift surveys

    Get PDF
    We perform a new study of future sensitivities of galaxy redshift surveys to the free-streaming effect caused by neutrino masses, adding the information on cosmological parameters from measurements of primary anisotropies of the cosmic microwave background (CMB). Our reference cosmological scenario has nine parameters and three different neutrino masses, with a hierarchy imposed by oscillation experiments. Within the present decade, the combination of the Sloan Digital Sky Survey (SDSS) and CMB data from the PLANCK experiment will have a 2-sigma detection threshold on the total neutrino mass close to 0.2 eV. This estimate is robust against the inclusion of extra free parameters in the reference cosmological model. On a longer term, the next generation of experiments may reach values of order sum m_nu = 0.1 eV at 2-sigma, or better if a galaxy redshift survey significantly larger than SDSS is completed. We also discuss how the small changes on the free-streaming scales in the normal and inverted hierarchy schemes are translated into the expected errors from future cosmological data.Comment: 14 pages, 7 figures. Added results with the KAOS proposal and 1 referenc

    Current cosmological bounds on neutrino masses and relativistic relics

    Get PDF
    We combine the most recent observations of large-scale structure (2dF and SDSS galaxy surveys) and cosmic microwave anisotropies (WMAP and ACBAR) to put constraints on flat cosmological models where the number of massive neutrinos and of massless relativistic relics are both left arbitrary. We discuss the impact of each dataset and of various priors on our bounds. For the standard case of three thermalized neutrinos, we find an upper bound on the total neutrino mass sum m_nu < 1.0 (resp. 0.6) eV (at 2sigma), using only CMB and LSS data (resp. including priors from supernovae data and the HST Key Project), a bound that is quite insensitive to the splitting of the total mass between the three species. When the total number of neutrinos or relativistic relics N_eff is left free, the upper bound on sum m_nu (at 2sigma, including all priors) ranges from 1.0 to 1.5 eV depending on the mass splitting. We provide an explanation of the parameter degeneracy that allows larger values of the masses when N_eff increases. Finally, we show that the limit on the total neutrino mass is not significantly modified in the presence of primordial gravitational waves, because current data provide a clear distinction between the corresponding effects.Comment: 13 pages, 6 figure

    What can we learn from neutrinoless double beta decay experiments?

    Get PDF
    We assess how well next generation neutrinoless double beta decay and normal neutrino beta decay experiments can answer four fundamental questions. 1) If neutrinoless double beta decay searches do not detect a signal, and if the spectrum is known to be inverted hierarchy, can we conclude that neutrinos are Dirac particles? 2) If neutrinoless double beta decay searches are negative and a next generation ordinary beta decay experiment detects the neutrino mass scale, can we conclude that neutrinos are Dirac particles? 3) If neutrinoless double beta decay is observed with a large neutrino mass element, what is the total mass in neutrinos? 4) If neutrinoless double beta decay is observed but next generation beta decay searches for a neutrino mass only set a mass upper limit, can we establish whether the mass hierarchy is normal or inverted? We base our answers on the expected performance of next generation neutrinoless double beta decay experiments and on simulations of the accuracy of calculations of nuclear matrix elements.Comment: Added reference

    Recent advances in neutrinoless double beta decay search

    Full text link
    Even after the discovery of neutrino flavour oscillations, based on data from atmospheric, solar, reactor, and accelerator experiments, many characteristics of the neutrino remain unknown. Only the neutrino square-mass differences and the mixing angle values have been estimated, while the value of each mass eigenstate still hasn't. Its nature (massive Majorana or Dirac particle) is still escaping. Neutrinoless double beta decay (0Μ0\nu-DBD) experimental discovery could be the ultimate answer to some delicate questions of elementary particle and nuclear physics. The Majorana description of neutrinos allows the 0Μ0\nu-DBD process, and consequently either a mass value could be measured or the existence of physics beyond the standard should be confirmed without any doubt. As expected, the 0Μ0\nu-DBD measurement is a very difficult field of application for experimentalists. In this paper, after a short summary of the latest results in neutrino physics, the experimental status, the R&D projects, and perspectives in 0Μ0\nu-DBD sector are reviewed.Comment: 36 pages, 7 figures, To be publish in Czech Journal of Physic

    The Majorana neutrino masses, neutrinoless double beta decay and nuclear matrix elements

    Full text link
    The effective Majorana neutrino mass is evaluated by using the latest results of neutrino oscillation experiments. The problems of the neutrino mass spectrum,absolute mass scale of neutrinos and the effect of CP phases are addressed. A connection to the next generation of the neutrinoless double beta decay (0nbb-decay) experiments is discussed. The calculations are performed for 76Ge, 100Mo, 136Xe and 130Te by using the advantage of recently evaluated nuclear matrix elements with significantly reduced theoretical uncertainty. An importance of observation of the 0nbb-decay of several nuclei is stressed.Comment: 29 pages, 5 figures, EXO (10 t) experiment considere

    Supernova Observation Via Neutrino-Nucleus Elastic Scattering in the CLEAN Detector

    Get PDF
    Development of large mass detectors for low-energy neutrinos and dark matter may allow supernova detection via neutrino-nucleus elastic scattering. An elastic-scattering detector could observe a few, or more, events per ton for a galactic supernova at 10 kpc (3.1×10203.1 \times 10^{20} m). This large yield, a factor of at least 20 greater than that for existing light-water detectors, arises because of the very large coherent cross section and the sensitivity to all flavors of neutrinos and antineutrinos. An elastic scattering detector can provide important information on the flux and spectrum of ΜΌ\nu_\mu and Μτ\nu_\tau from supernovae. We consider many detectors and a range of target materials from 4^4He to 208^{208}Pb. Monte Carlo simulations of low-energy backgrounds are presented for the liquid-neon-based Cryogenic Low Energy Astrophysics with Noble gases (CLEAN) detector. The simulated background is much smaller than the expected signal from a galactic supernova.Comment: 10 pages, 5 figures, submitted to Phys. Rev.

    A simplified (modified) Duke Activity Status Index (M-DASI) to characterise functional capacity: A secondary analysis of the Measurement of Exercise Tolerance before Surgery (METS) study

    Get PDF
    Background Accurate assessment of functional capacity, a predictor of postoperative morbidity and mortality, is essential to improving surgical planning and outcomes. We assessed if all 12 items of the Duke Activity Status Index (DASI) were equally important in reflecting exercise capacity. Methods In this secondary cross-sectional analysis of the international, multicentre Measurement of Exercise Tolerance before Surgery (METS) study, we assessed cardiopulmonary exercise testing and DASI data from 1455 participants. Multivariable regression analyses were used to revise the DASI model in predicting an anaerobic threshold (AT) >11 ml kg −1 min −1 and peak oxygen consumption (VO 2 peak) >16 ml kg −1 min −1, cut-points that represent a reduced risk of postoperative complications. Results Five questions were identified to have dominance in predicting AT>11 ml kg −1 min −1 and VO 2 peak>16 ml.kg −1min −1. These items were included in the M-DASI-5Q and retained utility in predicting AT>11 ml.kg −1.min −1 (area under the receiver-operating-characteristic [AUROC]-AT: M-DASI-5Q=0.67 vs original 12-question DASI=0.66) and VO 2 peak (AUROC-VO2 peak: M-DASI-5Q 0.73 vs original 12-question DASI 0.71). Conversely, in a sensitivity analysis we removed one potentially sensitive question related to the ability to have sexual relations, and the ability of the remaining four questions (M-DASI-4Q) to predict an adequate functional threshold remained no worse than the original 12-question DASI model. Adding a dynamic component to the M-DASI-4Q by assessing the chronotropic response to exercise improved its ability to discriminate between those with VO 2 peak>16 ml.kg −1.min −1 and VO 2 peak<16 ml.kg −1.min −1. Conclusions The M-DASI provides a simple screening tool for further preoperative evaluation, including with cardiopulmonary exercise testing, to guide perioperative management

    The Sudbury Neutrino Observatory

    Full text link
    The Sudbury Neutrino Observatory is a second generation water Cherenkov detector designed to determine whether the currently observed solar neutrino deficit is a result of neutrino oscillations. The detector is unique in its use of D2O as a detection medium, permitting it to make a solar model-independent test of the neutrino oscillation hypothesis by comparison of the charged- and neutral-current interaction rates. In this paper the physical properties, construction, and preliminary operation of the Sudbury Neutrino Observatory are described. Data and predicted operating parameters are provided whenever possible.Comment: 58 pages, 12 figures, submitted to Nucl. Inst. Meth. Uses elsart and epsf style files. For additional information about SNO see http://www.sno.phy.queensu.ca . This version has some new reference
    • 

    corecore