37 research outputs found
Spin-one color superconductivity in compact stars?- an analysis within NJL-type models
We present results of a microscopic calculation using NJL-type model of
possible spin-one pairings in two flavor quark matter for applications in
compact star phenomenology. We focus on the color-spin locking phase (CSL) in
which all quarks pair in a symmetric way, in which color and spin states are
locked. The CSL condensate is particularly interesting for compact star
applications since it is flavor symmetric and could easily satisfy charge
neutrality. Moreover, the fact that in this phase all quarks are gapped might
help to suppress the direct Urca process, consistent with cooling models. The
order of magnitude of these small gaps (~1 MeV) will not influence the EoS, but
their also small critical temperatures (T_c ~800 keV) could be relevant in the
late stages neutron star evolution, when the temperature falls below this value
and a CSL quark core could form.Comment: 7 pages, 7 figures, revised version, accepted for the Conference
Proceedings of "Isolated Neutron Stars: from the Interior to the Surface",
London, 24-28. April 200
How robust is a 2SC quark matter phase under compact star constraints?
We study the phase structure and equation of state for two-flavor quark
matter at low temperature under compact star constraints within a nonlocal
chiral quark model. We find that the occurence of a two-flavor color
superconducting (2SC) phase is sensitive to variations of both the formfactor
of the interaction and the ratio \eta between the coupling constants in the
diquark and the scalar meson channels. Our study suggests that for standard
values of the coupling ratio 0.5<\eta<0.75 either the 2SC phase does not occur
(Gaussian formfactor) or it exists only in a mixed phase with normal quark
matter (NQ-2SC) with a volume fraction less than 20 - 40 %, occuring at high
baryon chemical potentials \mu_B >1200 MeV and most likely not relevant for
compact stars. We also present the relevant region of the phase diagram for
compact star applications and obtain that no gapless 2SC occurs at low
temperatures.Comment: 19 pages, 9 figures, Subsec.2.5: "Phase diagram" adde
Hybrid Stars in a Strong Magnetic Field
We study the effects of high magnetic fields on the particle population and
equation of state of hybrid stars using an extended hadronic and quark SU(3)
non-linear realization of the sigma model. In this model the degrees of freedom
change naturally from hadrons to quarks as the density and/or temperature
increases. The effects of high magnetic fields and anomalous magnetic moment
are visible in the macroscopic properties of the star, such as mass, adiabatic
index, moment of inertia, and cooling curves. Moreover, at the same time that
the magnetic fields become high enough to modify those properties, they make
the star anisotropic.Comment: Revised version with updated reference
Relation Between Chiral Susceptibility and Solutions of Gap Equation in Nambu--Jona-Lasinio Model
We study the solutions of the gap equation, the thermodynamic potential and
the chiral susceptibility in and beyond the chiral limit at finite chemical
potential in the Nambu--Jona-Lasinio (NJL) model. We give an explicit relation
between the chiral susceptibility and the thermodynamic potential in the NJL
model. We find that the chiral susceptibility is a quantity being able to
represent the furcation of the solutions of the gap equation and the
concavo-convexity of the thermodynamic potential in NJL model. It indicates
that the chiral susceptibility can identify the stable state and the
possibility of the chiral phase transition in NJL model.Comment: 21 pages, 6 figures, misprints are correcte
Recommended from our members
Track A Basic Science
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138319/1/jia218438.pd