23 research outputs found

    Defining High Bleeding Risk in Patients Undergoing Percutaneous Coronary Intervention A Consensus Document From the Academic Research Consortium for High Bleeding Risk

    Get PDF
    Identification and management of patients at high bleeding risk undergoing percutaneous coronary intervention are of major importance, but a lack of standardization in defining this population limits trial design, data interpretation, and clinical decision-making. The Academic Research Consortium for High Bleeding Risk (ARC-HBR) is a collaboration among leading research organizations, regulatory authorities, and physician-scientists from the United States, Asia, and Europe focusing on percutaneous coronary intervention–related bleeding. Two meetings of the 31-member consortium were held in Washington, DC, in April 2018 and in Paris, France, in October 2018. These meetings were organized by the Cardiovascular European Research Center on behalf of the ARC-HBR group and included representatives of the US Food and Drug Administration and the Japanese Pharmaceuticals and Medical Devices Agency, as well as observers from the pharmaceutical and medical device industries. A consensus definition of patients at high bleeding risk was developed that was based on review of the available evidence. The definition is intended to provide consistency in defining this population for clinical trials and to complement clinical decision-making and regulatory review. The proposed ARC-HBR consensus document represents the first pragmatic approach to a consistent definition of high bleeding risk in clinical trials evaluating the safety and effectiveness of devices and drug regimens for patients undergoing percutaneous coronary intervention

    Better wine for better health: fact or fiction?

    No full text
    In the first decade of the twenty-first century, the potential therapeutic effects of regular moderate wine consumption are being increasingly acknowledged. They include a reduction in the risk of, and death from, cardiovascular disease, which accounted for 40% of all Australian deaths in 2000. The reduction in risk for wine consumers is similar to that of consumers of fruits, grains and vegetables, which, together with wine, are the core components of a 'Mediterranean-style diet'. The chemical components of wine considered primarily responsible for this therapeutic effect are ethanol, and the phenolic compounds and their polyphenolic forms. Indeed, moderate wine consumption has been observed to supplement the cardioprotective effects of an already high phenolic diet, and more importantly, to counter the harmful effects of a high fat diet on blood clotting, endothelial function and lipid oxidation, which contribute to the development of cardiovascular disease. This paper explores both the viticultural and vinification factors that influence phenolic concentration in grapes and wine. The synthesis and accumulation of phenolic compounds in grapes is primarily dependent upon varietal factors, the expression of which is influenced by a combination of climatic and viticultural factors such as sunlight and temperature during ripening, as well as ripeness at harvest. While the maximum possible concentration of phenolic compounds in a wine will be determined by the content in the constituent grapes, factors which influence the extraction of the phenolic compounds from the skins and seeds primarily influence their concentration in the juice, must and wine. Once harvested, the concentration of phenolic compounds in grapes is invariate, but extraction efficiency can vary during vinification. Accordingly, this paper also explores innovative techniques and technologies that can increase the phenolic content of the resultant wine. At best, winemaking can only extract at 50% of the total phenolic compounds accumulated in the grapes. Therefore, the phenolic content of the resultant wine can only be increased by supplementation of the must during fermentation with additional sources of phenolic compounds. Alternatively, a grape seed extract could be added to wine post fermentation to supplement its phenolic content, although this same grape seed extract may also be added to other foods such as yoghurt, from which the phenolic compounds are readily absorbed. Regular and moderate consumption of wine by consumers should, however, be placed in context with the other constituents and characteristics of a healthy diet and lifestyle. Indeed, wine consumers generally have fewer risk factors for cardiovascular disease compared with beer and spirits consumers, which is reflected in an approximately 25% to 35% lower risk of cardiovascular disease for wine consumers compared to consumers of beer and spirits, respectively
    corecore