107 research outputs found

    A microscopic model for d-wave charge carrier pairing and non-Fermi-liquid behavior in a purely repulsive 2D electron system

    Full text link
    We investigate a microscopic model for strongly correlated electrons with both on-site and nearest neighbor Coulomb repulsion on a 2D square lattice. This exhibits a state in which electrons undergo a ``somersault'' in their internal spin-space (spin-flux) as they traverse a closed loop in external coordinate space. When this spin-1/2 antiferromagnetic (AFM) insulator is doped, the ground state is a liquid of charged, bosonic meron-vortices, which for topological reasons are created in vortex-antivortex pairs. The magnetic exchange energy of the distorted AFM background leads to a logarithmic vortex-antivortex attraction which overcomes the direct Coulomb repulsion between holes localized on the vortex cores. This leads to the appearance of pre-formed charged pairs. We use the Configuration Interaction (CI) Method to study the quantum translational and rotational motion of various charged magnetic solitons and soliton pairs. The CI method systematically describes fluctuation and quantum tunneling corrections to the Hartree-Fock Approximation (HFA). We find that the lowest energy charged meron-antimeron pairs exhibit d-wave rotational symmetry, consistent with the symmetry of the cuprate superconducting order parameter. For a single hole in the 2D AFM plane, we find a precursor to spin-charge separation in which a conventional charged spin-polaron dissociates into a singly charged meron-antimeron pair. This model provides a unified microscopic basis for (i) non-Fermi-liquid transport properties, (ii) d-wave preformed charged carrier pairs, (iii) mid-infrared optical absorption, (iv) destruction of AFM long range order with doping and other magnetic properties, and (v) certain aspects of angled resolved photo-emission spectroscopy (ARPES).Comment: 14 pages, 17 figure

    Universal scaling of the Hall resistivity in MgB2 superconductors

    Full text link
    The mixed-state Hall resistivity and the longitudinal resistivity in superconducting MgB2 thin films have been investigated as a function of the magnetic field over a wide range of current densities from 100 to 10000 A/cm^2. We observe a universal Hall scaling behavior with a constant exponent of 2.0, which is independent of the magnetic field, the temperature, and the current density. This result can be interpreted well within the context of recent theories.Comment: 4 page

    Renormalization Group and Fermi Liquid Theory

    Full text link
    We give a Hamiltonian based interpretation of microscopic Fermi liquid theory within a renormalization group framework. We identify the fixed point Hamiltonian of Fermi liquid theory, with the leading order corrections, and show that this Hamiltonian in mean field theory gives the Landau phenomenological theory. A renormalized perturbation theory is developed for calculations beyond the Fermi liquid regime. We also briefly discuss the breakdown of Fermi liquid theory as it occurs in the Luttinger model, and the infinite dimensional Hubbard model at the Mott transition.Comment: 37 pages, postscript, Imperial College preprint 1994. Latex file plus separate figures available on reques

    Systematic Cu-63 NQR studies of the stripe phase in La(1.6-x)Nd(0.4)Sr(x)CuO(4) for 0.07 <= x <= 0.25

    Full text link
    We demonstrate that the integrated intensity of Cu-63 nuclear quadrupole resonance (NQR) in La(1.6-x)Nd(0.4)Sr(x)CuO(4) decreases dramatically below the charge-stripe ordering temperature T(charge). Comparison with neutron and X-ray scattering indicates that the wipeout fraction F(T) (i.e. the missing fraction of the integrated intensity of the NQR signal) represents the charge-stripe order parameter. The systematic study reveals bulk charge-stripe order throughout the superconducting region 0.07 <= x <= 0.25. As a function of the reduced temperature t = T/T(charge), the temperature dependence of F(t) is sharpest for the hole concentration x=1/8, indicating that x=1/8 is the optimum concentration for stripe formation.Comment: 10 pages of text and captions, 11 figures in postscript. Final version, with new data in Fig.

    In-plane Hall effect in c-axis-oriented MgB2 thin films

    Full text link
    We have measured the longitudinal resistivity and the Hall resistivity in the ab-plane of highly c-axis-oriented MgB2 thin films. In the normal state, the Hall coefficient (R_H) behaves as R_H ~ T with increasing temperature (T) up to 130 K and then deviates from that linear T-dependence at higher temperatures. The T^2 dependence of the cotangent of the Hall angle is only observed above 130 K. The mixed-state Hall effect reveals no sign anomaly over a wide range of current densities from 10^2 to 10^4 A/cm^2 and for magnetic fields up to 5 T.Comment: 5 pages including 5 figure

    Genetic Variants in HSD17B3, SMAD3, and IPO11 Impact Circulating Lipids in Response to Fenofibrate in Individuals With Type 2 Diabetes

    Get PDF
    Individuals with type 2 diabetes (T2D) and dyslipidemia are at an increased risk of cardiovascular disease. Fibrates are a class of drugs prescribed to treat dyslipidemia, but variation in response has been observed. To evaluate common and rare genetic variants that impact lipid responses to fenofibrate in statin-treated patients with T2D, we examined lipid changes in response to fenofibrate therapy using a genomewide association study (GWAS). Associations were followed-up using gene expression studies in mice. Common variants in SMAD3 and IPO11 were marginally associated with lipid changes in black subjects (P < 5 × 10 -6 ). Rare variant and gene expression changes were assessed using a false discovery rate approach. AKR7A3 and HSD17B13 were associated with lipid changes in white subjects (q < 0.2). Mice fed fenofibrate displayed reductions in Hsd17b13 gene expression (q < 0.1). Associations of variants in SMAD3, IPO11, and HSD17B13, with gene expression changes in mice indicate that transforming growth factor-beta (TGF-β) and NRF2 signaling pathways may influence fenofibrate effects on dyslipidemia in patients with T2D

    PPARA polymorphism influences the cardiovascular benefit of fenofibrate in type 2 diabetes: Findings from accord-lipid

    Get PDF
    The cardiovascular benefits of fibrates have been shown to be heterogeneous and to depend on the presence of atherogenic dyslipidemia. We investigated whether genetic variability in the PPARA gene, coding for the pharmacological target of fibrates (PPAR-a), could be used to improve the selection of patients with type 2 diabetes who may derive cardiovascular benefit from addition of this treatment to statins. We identified a common variant at the PPARA locus (rs6008845, C/T) displaying a study-wide significant influence on the effect of fenofibrate on major cardiovascular events (MACE) among 3,065 self-reported white subjects treated with simvastatin and randomized to fenofibrate or placebo in the ACCORD-Lipid trial. T/T homozygotes (36% of participants) experienced a 51% MACE reduction in response to fenofibrate (hazard ratio 0.49; 95% CI 0.34–0.72), whereas no benefit was observed for other genotypes (Pinteraction 5 3.7 3 1024). The rs6008845-by-fenofibrate interaction on MACE was replicated in African Americans from ACCORD (N 5 585, P 5 0.02) and in external cohorts (ACCORD-BP, ORIGIN, and TRIUMPH, total N 5 3059, P 5 0.005). Remarkably, rs6008845 T/T homozygotes experienced a cardiovascular benefit from fibrate even in the absence of atherogenic dyslipidemia. Among these individuals, but not among carriers of other genotypes, fenofibrate treatment was associated with lower circulating levels of CCL11—a proinflammatory and atherogenic chemokine also known as eotaxin (P for rs6008845-by-fenofibrate interaction 5 0.003). The GTEx data set revealed regulatory functions of rs6008845 on PPARA expression in many tissues. In summary, we have found a common PPARA regulatory variant that influences the cardiovascular effects of fenofibrate and that could be used to identify patients with type 2 diabetes who would derive benefit from fenofibrate treatment, in addition to those with atherogenic dyslipidemia

    SPECIFIC HEAT OF SUPERCONDUCTING In-Mn ALLOYS

    No full text
    Nous avons déterminé la discontinuité de la chaleur spécifique des alliages In-Mn à la transition supraconductrice. En comparant nos résultats avec les prédictions basées sur la théorie de Shiba concernant les spins classiques dans les supraconducteurs, nous concluons que la théorie classique ne décrit pas nos résultats de manière adéquate, mais il se pourrait qu'un traitement complet par la mécanique quantique puisse le faire.We have measured the discontinuity in the specific heat of In-Mn alloys at the superconducting transition. By comparing our results with predictions based on the theory of Shiba for classical spins in superconductors, we conclude that the classical theory does not adequately describe our results, but a fully quantum-mechanical treatment may do so
    • …
    corecore