546 research outputs found
Quantum information cannot be split into complementary parts
We prove a new impossibility for quantum information (the no-splitting
theorem): an unknown quantum bit (qubit) cannot be split into two complementary
qubits. This impossibility, together with the no-cloning theorem, demonstrates
that an unknown qubit state is a single entity, which cannot be cloned or
split. This sheds new light on quantum computation and quantum information.Comment: 9 pages, 1 figur
N-qubit entanglement via the -type collective interaction
We investigate quantum correlations of the -qubit states via a collective
pseudo-spin interaction () on arbitrary pure separable states
for a given interval of time. Based on this dynamical generation of the
-qubit maximal entangled states, a quantum secret sharing protocol with
continuous classical secrets is developed.Comment: 12 pages, 3 figure
Study on Selective Laser Sintering of Eucalyptus/PES Blend and Investment Casting Technology
AbstractThe paper studies the Selective Laser Sintering (SLS) of Eucalyptus/PES blend and the Investment Casting (IC) technology of the forming part. This blend is suitable for being the raw material of SLS, because not only it has low cost, but also it can be produced by SLS to form the parts with high molding precision and mechanical strength after post processing; also the prototype can be used as the investment pattern.Combining the Eucalyptus/PES blend (which is a kind of Wood Plastic Composite, WPC), SLS with IC can reduce the production cost, also shorten the product development and manufacture cycle. Meanwhile it realizes the application of low-cost WPC in precision casting production. Mould making in investment casting is an extremely important procedure, from analyzing and calculating the physical and chemical characters of the prototypes during melting. It is known that WPC parts can be burnt off by the process of low-temperature dewaxing and high-temperature roasting before investment casting. After blowing the ash off by high-pressure air, the precision of the cavity is similar to one using a wax pattern. So for single and batch production, the WPC can be used as the investment pattern of IC technology instead of wax or resin. This paper studies the investment casting technology which is suitable for patterns produced by Selective Laser Sintering of Eucalyptus/PES blend
Finite Temperature Properties of Quantum Antiferromagnets in a Uniform Magnetic Field in One and Two Dimensions
Consider a -dimensional antiferromagnet with a quantum disordered ground
state and a gap to bosonic excitations with non-zero spin. In a finite external
magnetic field, this antiferromagnet will undergo a phase transition to a
ground state with non-zero magnetization, describable as the condensation of a
dilute gas of bosons. The finite temperature properties of the Bose gas in the
vicinity of this transition are argued to obey a hypothesis of ZERO
SCALE-FACTOR UNIVERSALITY for , with logarithmic violations in .
Scaling properties of various experimental observables are computed in an
expansion in , and exactly in .Comment: 27 pages, REVTEX 3.0, 8 Postscript figures appended, YCTP-xyz
Search for the Rare Decays J/Psi --> Ds- e+ nu_e, J/Psi --> D- e+ nu_e, and J/Psi --> D0bar e+ e-
We report on a search for the decays J/Psi --> Ds- e+ nu_e + c.c., J/Psi -->
D- e+ nu_e + c.c., and J/Psi --> D0bar e+ e- + c.c. in a sample of 5.8 * 10^7
J/Psi events collected with the BESII detector at the BEPC. No excess of signal
above background is observed, and 90% confidence level upper limits on the
branching fractions are set: B(J/Psi --> Ds- e+ nu_e + c.c.)<4.8*10^-5, B(J/Psi
--> D- e+ nu_e + c.c.) D0bar e+ e- + c.c.)<1.1*10^-5Comment: 10 pages, 4 figure
Direct Measurements of the Branching Fractions for and and Determinations of the Form Factors and
The absolute branching fractions for the decays and
are determined using singly
tagged sample from the data collected around 3.773 GeV with the
BES-II detector at the BEPC. In the system recoiling against the singly tagged
meson, events for and events for decays are observed. Those yield
the absolute branching fractions to be and . The
vector form factors are determined to be
and . The ratio of the two form
factors is measured to be .Comment: 6 pages, 5 figure
Study of J/psi decays to Lambda Lambdabar and Sigma0 Sigma0bar
The branching ratios and Angular distributions for J/psi decays to Lambda
Lambdabar and Sigma0 Sigma0bar are measured using BESII 58 million J/psi.Comment: 11 pages, 5 figure
Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta
Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector,
the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are
measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and
(7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure
BESII Detector Simulation
A Monte Carlo program based on Geant3 has been developed for BESII detector
simulation. The organization of the program is outlined, and the digitization
procedure for simulating the response of various sub-detectors is described.
Comparisons with data show that the performance of the program is generally
satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM
Measurement of branching fractions for the inclusive Cabibbo-favored ~K*0(892) and Cabibbo-suppressed K*0(892) decays of neutral and charged D mesons
The branching fractions for the inclusive Cabibbo-favored ~K*0 and
Cabibbo-suppressed K*0 decays of D mesons are measured based on a data sample
of 33 pb-1 collected at and around the center-of-mass energy of 3.773 GeV with
the BES-II detector at the BEPC collider. The branching fractions for the
decays D+(0) -> ~K*0(892)X and D0 -> K*0(892)X are determined to be BF(D0 ->
\~K*0X) = (8.7 +/- 4.0 +/- 1.2)%, BF(D+ -> ~K*0X) = (23.2 +/- 4.5 +/- 3.0)% and
BF(D0 -> K*0X) = (2.8 +/- 1.2 +/- 0.4)%. An upper limit on the branching
fraction at 90% C.L. for the decay D+ -> K*0(892)X is set to be BF(D+ -> K*0X)
< 6.6%
- …