209 research outputs found
DES Y3 + KiDS-1000: Consistent cosmology combining cosmic shear surveys
We present a joint cosmic shear analysis of the Dark Energy Survey (DES Y3)
and the Kilo-Degree Survey (KiDS-1000) in a collaborative effort between the
two survey teams. We find consistent cosmological parameter constraints between
DES Y3 and KiDS-1000 which, when combined in a joint-survey analysis, constrain
the parameter with a mean value of
. The mean marginal is lower than the maximum a
posteriori estimate, , owing to skewness in the marginal
distribution and projection effects in the multi-dimensional parameter space.
Our results are consistent with constraints from observations of the
cosmic microwave background by Planck, with agreement at the level.
We use a Hybrid analysis pipeline, defined from a mock survey study quantifying
the impact of the different analysis choices originally adopted by each survey
team. We review intrinsic alignment models, baryon feedback mitigation
strategies, priors, samplers and models of the non-linear matter power
spectrum.Comment: 38 pages, 21 figures, 15 tables, submitted to the Open Journal of
Astrophysics. Watch the core team discuss this analysis at
https://cosmologytalks.com/2023/05/26/des-kid
Global surveillance of cancer survival 1995-2009: analysis of individual data for 25,676,887 patients from 279 population-based registries in 67 countries (CONCORD-2)
BACKGROUND:
Worldwide data for cancer survival are scarce. We aimed to initiate worldwide surveillance of cancer survival by central analysis of population-based registry data, as a metric of the effectiveness of health systems, and to inform global policy on cancer control.
METHODS:
Individual tumour records were submitted by 279 population-based cancer registries in 67 countries for 25·7 million adults (age 15-99 years) and 75,000 children (age 0-14 years) diagnosed with cancer during 1995-2009 and followed up to Dec 31, 2009, or later. We looked at cancers of the stomach, colon, rectum, liver, lung, breast (women), cervix, ovary, and prostate in adults, and adult and childhood leukaemia. Standardised quality control procedures were applied; errors were corrected by the registry concerned. We estimated 5-year net survival, adjusted for background mortality in every country or region by age (single year), sex, and calendar year, and by race or ethnic origin in some countries. Estimates were age-standardised with the International Cancer Survival Standard weights.
FINDINGS:
5-year survival from colon, rectal, and breast cancers has increased steadily in most developed countries. For patients diagnosed during 2005-09, survival for colon and rectal cancer reached 60% or more in 22 countries around the world; for breast cancer, 5-year survival rose to 85% or higher in 17 countries worldwide. Liver and lung cancer remain lethal in all nations: for both cancers, 5-year survival is below 20% everywhere in Europe, in the range 15-19% in North America, and as low as 7-9% in Mongolia and Thailand. Striking rises in 5-year survival from prostate cancer have occurred in many countries: survival rose by 10-20% between 1995-99 and 2005-09 in 22 countries in South America, Asia, and Europe, but survival still varies widely around the world, from less than 60% in Bulgaria and Thailand to 95% or more in Brazil, Puerto Rico, and the USA. For cervical cancer, national estimates of 5-year survival range from less than 50% to more than 70%; regional variations are much wider, and improvements between 1995-99 and 2005-09 have generally been slight. For women diagnosed with ovarian cancer in 2005-09, 5-year survival was 40% or higher only in Ecuador, the USA, and 17 countries in Asia and Europe. 5-year survival for stomach cancer in 2005-09 was high (54-58%) in Japan and South Korea, compared with less than 40% in other countries. By contrast, 5-year survival from adult leukaemia in Japan and South Korea (18-23%) is lower than in most other countries. 5-year survival from childhood acute lymphoblastic leukaemia is less than 60% in several countries, but as high as 90% in Canada and four European countries, which suggests major deficiencies in the management of a largely curable disease.
INTERPRETATION:
International comparison of survival trends reveals very wide differences that are likely to be attributable to differences in access to early diagnosis and optimum treatment. Continuous worldwide surveillance of cancer survival should become an indispensable source of information for cancer patients and researchers and a stimulus for politicians to improve health policy and health-care systems
Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck . I. Construction of CMB lensing maps and modeling choices
Joint analyses of cross-correlations between measurements of galaxy positions, galaxy lensing, and lensing of the cosmic microwave background (CMB) offer powerful constraints on the large-scale structure of the Universe. In a forthcoming analysis, we will present cosmological constraints from the analysis of such cross-correlations measured using Year 3 data from the Dark Energy Survey (DES), and CMB data from the South Pole Telescope (SPT) and Planck. Here we present two key ingredients of this analysis: (1) an improved CMB lensing map in the SPT-SZ survey footprint and (2) the analysis methodology that will be used to extract cosmological information from the cross-correlation measurements. Relative to previous lensing maps made from the same CMB observations, we have implemented techniques to remove contamination from the thermal Sunyaev Zelâdovich effect, enabling the extraction of cosmological information from smaller angular scales of the cross-correlation measurements than in previous analyses with DES Year 1 data. We describe our model for the cross-correlations between these maps and DES data, and validate our modeling choices to demonstrate the robustness of our analysis. We then forecast the expected cosmological constraints from the galaxy survey-CMB lensing auto and cross-correlations. We find that the galaxy-CMB lensing and galaxy shear-CMB lensing correlations will on their own provide a constraint on
S
8
=
Ï
8
â
Ω
m
/
0.3
at the few percent level, providing a powerful consistency check for the DES-only constraints. We explore scenarios where external priors on shear calibration are removed, finding that the joint analysis of CMB lensing cross-correlations can provide constraints on the shear calibration amplitude at the 5% to 10% level
Joint analysis of Dark Energy Survey Year 3 data and CMB lensing from SPT and Planck . II. Cross-correlation measurements and cosmological constraints
Cross-correlations of galaxy positions and galaxy shears with maps of gravitational lensing of the cosmic microwave background (CMB) are sensitive to the distribution of large-scale structure in the Universe. Such cross-correlations are also expected to be immune to some of the systematic effects that complicate correlation measurements internal to galaxy surveys. We present measurements and modeling of the cross-correlations between galaxy positions and galaxy lensing measured in the first three years of data from the Dark Energy Survey with CMB lensing maps derived from a combination of data from the
2500
â
â
deg
2
SPT-SZ survey conducted with the South Pole Telescope and full-sky data from the Planck satellite. The CMB lensing maps used in this analysis have been constructed in a way that minimizes biases from the thermal Sunyaev Zelâdovich effect, making them well suited for cross-correlation studies. The total signal-to-noise of the cross-correlation measurements is 23.9 (25.7) when using a choice of angular scales optimized for a linear (nonlinear) galaxy bias model. We use the cross-correlation measurements to obtain constraints on cosmological parameters. For our fiducial galaxy sample, which consist of four bins of magnitude-selected galaxies, we find constraints of
Ω
m
=
0.272
+
0.032
â
0.052
and
S
8
âĄ
Ï
8
â
Ω
m
/
0.3
=
0.736
+
0.032
â
0.028
(
Ω
m
=
0.245
+
0.026
â
0.044
and
S
8
=
0.734
+
0.035
â
0.028
) when assuming linear (nonlinear) galaxy bias in our modeling. Considering only the cross-correlation of galaxy shear with CMB lensing, we find
Ω
m
=
0.270
+
0.043
â
0.061
and
S
8
=
0.740
+
0.034
â
0.029
. Our constraints on
S
8
are consistent with recent cosmic shear measurements, but lower than the values preferred by primary CMB measurements from Planck
Program Updating by Incremental and Answer Subsumption Tabling
Abstract. We explore the use of state-of-the-art Logic Programming (LP) implementation techniques to exploit their use in addressing a classical non-monotonic reasoning problem, that of LP program updates, with incidence on representing change, i.e. internal or self and external or world changes. We do so starting from a given LP update language and a given LP implementation system. We propose and foster a novel conceptual approach to program updates implementation that especially exploits two recent features of tabling in logic programming (in XSB Prolog): incremental and answer subsumption tabling. Our approach, termed EVOLP/R, is based on and follows the paradigm and constructs of Evolving Logic Programs (EVOLP), but simplifies it at first by restricting updates to fluents only. Rule updates are nevertheless achieved via the mechanism of rule name fluents, placed in rules â bodies, permitting to turn rules on or off, through assertions or retractions of their corresponding unique name fluents. Incremental tabling of fluents allows to automatically maintain â at engine level â the consistency of program states, analogously to an assumption based truth-maintenanc
Voltammetric characterization of the ferrocene vertical bar ferrocenium and cobaltocenium vertical bar cobaltocene redox couples in RTILs
Ferrocene, Fc, and cobaltocenium hexafluorophosphate, CcPF6, have been recommended for use as internal reference redox couples in room-temperature ionic liquids (RTILs), as well as in more conventional aprotic solvents. In this study, the electrochemical behavior of Fc and CcPF6 is reported in eight commonly used RTILs; [C2mim][NTf2], [C4mim][NTf2], [C4mim][BF4], [C 4mim][PF6], [C4mim][OTf], [C 4mim][NO3], [C4mpyrr][NTf2], and [P14,6,6,6][FAP], where [Cnmim]+ = 1-butyl-3-methylimidazolium, [NTf2] = bis-(trifluoromethylsulfonyl) imide, [BF4]- = tetrafluoroborate, [PF6] = hexafluorophosphate, [OTf] = trifluoromethylsuifonate, [NO3] - = nitrate, [C4mpyrr]+ = N-butyl-N- methylpyrrolidinium, [P14,6,6,6]+ = tris(n-hexyl)- tetradecylphosphonium and [FAP]- = trifluorotris(pentafluoroethyl) phosphate, over a range of concentrations and temperatures. Solubilities and diffusion coefficients, D, of both the charged and neutral species were determined using double potential-step chronoamperometry, and CcPF6 (36.5-450.0 mM) was found to be much more soluble than Fc (27.5-101.8 mM). It was observed that classical Stokes-Einstein diffusional behavior applies for Fc and CcPF6 in all eight RTILs. Diffusion coefficients of Fc and CcPF6 were calculated at a range of temperatures, and activation energies calculated. It was also determined that D for Fc and CcPF6 does not change significantly with concentration. This supports the use of both Fc and CcPF6 to provide a well-characterized and model redox couple for use as a voltammetric internal potential reference in RTILs contrary to previous literature reports in the former case. © 2008 American Chemical Society
- âŠ