715 research outputs found
Entropy of Lovelock Black Holes
A general formula for the entropy of stationary black holes in Lovelock
gravity theories is obtained by integrating the first law of black hole
mechanics, which is derived by Hamiltonian methods. The entropy is not simply
one quarter of the surface area of the horizon, but also includes a sum of
intrinsic curvature invariants integrated over a cross section of the horizon.Comment: 15 pages, plain Latex, NSF-ITP-93-4
Remote Sensing for Estimated Soil Salinity
Many soils in arid areas of the world are affected by high water tables
and resultant soil salinity. Detection of the saline areas and of the degree of
salinity in the rooting profile is of considerable interest to agricultural
workers involved in reclamation of these soils. Early detection of saline
areas may permit preventive measures before significant crop damage is
apparent. Furthermore, rapid detection of saline areas, using advanced
methods and procedures can greatly accelerate initiation of reclamation
processes.
Aerial photography has been used for detailed study of forest vegetations
and for many other purposes. Recently, Myers, Ussery, and Rippert used
black and white infrared aerial photography for detection of drainage and
salinity problems
Photogrammetry and Temperature Sensing for Estimating Soil Salinity
Cotton was used as an indicator plant to relate the salinity in the 0 to
1.524 m (0 to 5 feet) profile at some reference locations to that at a number
of prediction sites where the salinity was unknown. Aerial photographs
were taken using ektachrome infrared aero film for observing the salinity-affected
cotton. On the basis of color tones, it was possible to distinguish
five levels of salinity.
The level of salinity significantly affected photographic features,
making it possible to estimate with reasonable accuracy the degree of
salinity in the soil profile from interpretation of film negatives.
Infrared radiometer measurements of cotton leaf temperatures were
made on the ground and from an aeroplane. The limited aerial measurements
made compared favorably with ground measurements. Statistical
studies of the temperature data taken on the ground indicate that soil
salinity can be predicted from cotton leaf temperatures with reasonable
accuracy
Black holes in the Einstein -Gauss-Bonnet theory and the geometry of their thermodynamics-II
In the present work we study (i) charged black hole in Einstein-Gauss-Bonnet
(EGB) theory, known as Einstein-Maxwell-Gauss-Bonnet (EMGB) black hole and (ii)
black hole in EGB gravity with Yang-Mills field. The thermodynamic geometry of
these two black hole solutions has been investigated, using the modified
entropy in Gauss-Bonnet theory.Comment: 7 page
Can we avoid high coupling?
It is considered good software design practice to organize source code into modules and to favour within-module connections (cohesion) over between-module connections (coupling), leading to the oft-repeated maxim "low coupling/high cohesion". Prior research into network theory and its application to software systems has found evidence that many important properties in real software systems exhibit approximately scale-free structure, including coupling; researchers have claimed that such scale-free structures are ubiquitous. This implies that high coupling must be unavoidable, statistically speaking, apparently contradicting standard ideas about software structure. We present a model that leads to the simple predictions that approximately scale-free structures ought to arise both for between-module connectivity and overall connectivity, and not as the result of poor design or optimization shortcuts. These predictions are borne out by our large-scale empirical study. Hence we conclude that high coupling is not avoidable--and that this is in fact quite reasonable
Thermodynamic and gravitational instability on hyperbolic spaces
We study the properties of anti--de Sitter black holes with a Gauss-Bonnet
term for various horizon topologies (k=0, \pm 1) and for various dimensions,
with emphasis on the less well understood k=-1 solution. We find that the zero
temperature (and zero energy density) extremal states are the local minima of
the energy for AdS black holes with hyperbolic event horizons. The hyperbolic
AdS black hole may be stable thermodynamically if the background is defined by
an extremal solution and the extremal entropy is non-negative. We also
investigate the gravitational stability of AdS spacetimes of dimensions D>4
against linear perturbations and find that the extremal states are still the
local minima of the energy. For a spherically symmetric AdS black hole
solution, the gravitational potential is positive and bounded, with or without
the Gauss-Bonnet type corrections, while, when k=-1, a small Gauss-Bonnet
coupling, namely, \alpha << {l}^2 (where l is the curvature radius of AdS
space), is found useful to keep the potential bounded from below, as required
for stability of the extremal background.Comment: Shortened to match published (PRD) version, 18 pages, several eps
figure
Geometrothermodynamics of five dimensional black holes in Einstein-Gauss-Bonnet-theory
We investigate the thermodynamic properties of 5D static and spherically
symmetric black holes in (i) Einstein-Maxwell-Gauss-Bonnet theory, (ii)
Einstein-Maxwell-Gauss-Bonnet theory with negative cosmological constant, and
in (iii) Einstein-Yang-Mills-Gauss-Bonnet theory. To formulate the
thermodynamics of these black holes we use the Bekenstein-Hawking entropy
relation and, alternatively, a modified entropy formula which follows from the
first law of thermodynamics of black holes. The results of both approaches are
not equivalent. Using the formalism of geometrothermodynamics, we introduce in
the manifold of equilibrium states a Legendre invariant metric for each black
hole and for each thermodynamic approach, and show that the thermodynamic
curvature diverges at those points where the temperature vanishes and the heat
capacity diverges.Comment: New sections added, references adde
Gauss-Bonnet Black Holes in dS Spaces
We study the thermodynamic properties associated with black hole horizon and
cosmological horizon for the Gauss-Bonnet solution in de Sitter space. When the
Gauss-Bonnet coefficient is positive, a locally stable small black hole appears
in the case of spacetime dimension , the stable small black hole
disappears and the Gauss-Bonnet black hole is always unstable quantum
mechanically when . On the other hand, the cosmological horizon is
found always locally stable independent of the spacetime dimension. But the
solution is not globally preferred, instead the pure de Sitter space is
globally preferred. When the Gauss-Bonnet coefficient is negative, there is a
constraint on the value of the coefficient, beyond which the gravity theory is
not well defined. As a result, there is not only an upper bound on the size of
black hole horizon radius at which the black hole horizon and cosmological
horizon coincide with each other, but also a lower bound depending on the
Gauss-Bonnet coefficient and spacetime dimension. Within the physical phase
space, the black hole horizon is always thermodynamically unstable and the
cosmological horizon is always stable, further, as the case of the positive
coefficient, the pure de Sitter space is still globally preferred. This result
is consistent with the argument that the pure de Sitter space corresponds to an
UV fixed point of dual field theory.Comment: Rextex, 17 pages including 8 eps figures, v2: minor changes, to
appear in PRD, v3: references adde
Magnetic phases and reorientation transitions in antiferromagnetically coupled multilayers
In antiferromagnetically coupled superlattices grown on (001) faces of cubic
substrates, e.g. based on materials combinations as Co/Cu, Fe/Si, Co/Cr, or
Fe/Cr, the magnetic states evolve under competing influence of bilinear and
biquadratic exchange interactions, surface-enhanced four-fold in-plane
anisotropy, and specific finite-size effects. Using phenomenological
(micromagnetic) theory, a comprehensive survey of the magnetic states and
reorientation transitions has been carried out for multilayer systems with even
number of ferromagnetic sub-layers and magnetizations in the plane. In
two-layer systems (N=2) the phase diagrams in dependence on components of the
applied field in the plane include ``swallow-tail'' type regions of
(metastable) multistate co-existence and a number of continuous and
discontinuous reorientation transitions induced by radial and transversal
components of the applied field. In multilayers (N \ge 4) noncollinear states
are spatially inhomogeneous with magnetization varying across the multilayer
stack. For weak four-fold anisotropy the magnetic states under influence of an
applied field evolve by a complex continuous reorientation into the saturated
state. At higher anisotropy they transform into various inhomogeneous and
asymmetric structures. The discontinuous transitions between the magnetic
states in these two-layers and multilayers are characterized by broad ranges of
multi-phase coexistence of the (metastable) states and give rise to specific
transitional domain structures.Comment: Manuscript 34 pages, 14 figures; submitted for publicatio
A 750 mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions
We present a solid-state laser system that generates 750 mW of
continuous-wave single-frequency output at 313 nm. Sum-frequency generation
with fiber lasers at 1550 nm and 1051 nm produces up to 2 W at 626 nm. This
visible light is then converted to UV by cavity-enhanced second-harmonic
generation. The laser output can be tuned over a 495 GHz range, which includes
the 9Be+ laser cooling and repumping transitions. This is the first report of a
narrow-linewidth laser system with sufficient power to perform fault-tolerant
quantum-gate operations with trapped 9Be+ ions by use of stimulated Raman
transitions.Comment: 9 pages, 4 figure
- âŠ