1,213 research outputs found
Indication on the universal hadron substructure - constituent quarks
The universality of single-spin asymmetry on inclusive pi-meson production is
discussed. This universality can be related to the hadron substructure -
constituent quarks.Comment: 3 pages, 3 figures, references adde
The structure ofAl(111)-K−(√3 × √3)R30° determined by LEED: stable and metastable adsorption sites
It is found that the adsorption of potassium on Al(111) at 90 K and at 300 K both result in a (√3 × √3)R0° structure. Through a detailed LEED analysis it is revealed that at 300 K the adatoms occupy substitutional sites and at 90 K the adatoms occupy on-top sites; both geometries have hitherto been considered as very unusual. The relationship between bond length and coordination is discussed with respect to the present results, and with respect to other quantitative studies of alkali-metal/metal adsorption systems
Transverse momentum dependence in gluon distribution and fragmentation functions
We investigate the twist two gluon distribution functions for spin 1/2
hadrons, emphasizing intrinsic transverse momentum of the gluons. These
functions are relevant in leading order in the inverse hard scale in scattering
processes such as inclusive leptoproduction or Drell-Yan scattering, or more
general in hard processes in which at least two hadrons are involved. They show
up in azimuthal asymmetries. For future estimates of such observables, we
discuss specific bounds on these functions.Comment: 14 pages, revtex, 7 Postscript figure
Production of -pairs at HERA-
The production of -pairs as a possible measure of the polarized gluon
distribution is studied for proton--nucleon collisions at
\sqrt{s} =40\;\mbox{GeV}^2 (HERA-). Possibilities of
reconstructing the helicity state of at least one of the 's are
critically reviewed. The observation of production asymmetries in the single
polarized mode of HERA- is found to be not feasible.Comment: 8 pages, LATeX, 3 figures availabe as .uu-fil
A novel procedure for fast surface structural analysis based on LEED intensity data
By evaluating LEED intensities from different diffraction beams taken only at discrete energy intervals (which may be as large as 15–20 eV) the same degree of reliability in surface structure determination can be reached as with the conventional techniques based on analysis of continuous I/V-spectra. The minimum of the corresponding R-factor can be found by a least-squares fit method, as will be exemplified with a system in which 8 structural parameters were subject to simultaneous refinement
Single spin asymmetries in QCD
Measurements of single transverse spin asymmetries in high energy inclusive
processes have always shown unexpected and challenging results. Several cases
are considered and discussed within a QCD approach which couples perturbative
dynamics to new non perturbative partonic information; the aim is that of
developing a consistent phenomenological description of these unusual single
spin phenomena, based on a generalized QCD factorization scheme.Comment: 14 pages, lectures delivered at School on "Symmetries and Spin",
Praha-SPIN-2001, Prague, July 15 - July 28, 200
Dark energy as a mirage
Motivated by the observed cosmic matter distribution, we present the
following conjecture: due to the formation of voids and opaque structures, the
average matter density on the path of the light from the well-observed objects
changes from Omega_M ~ 1 in the homogeneous early universe to Omega_M ~ 0 in
the clumpy late universe, so that the average expansion rate increases along
our line of sight from EdS expansion Ht ~ 2/3 at high redshifts to free
expansion Ht ~ 1 at low redshifts. To calculate the modified observable
distance-redshift relations, we introduce a generalized Dyer-Roeder method that
allows for two crucial physical properties of the universe: inhomogeneities in
the expansion rate and the growth of the nonlinear structures. By treating the
transition redshift to the void-dominated era as a free parameter, we find a
phenomenological fit to the observations from the CMB anisotropy, the position
of the baryon oscillation peak, the magnitude-redshift relations of type Ia
supernovae, the local Hubble flow and the nucleosynthesis, resulting in a
concordant model of the universe with 90% dark matter, 10% baryons, no dark
energy, 15 Gyr as the age of the universe and a natural value for the
transition redshift z_0=0.35. Unlike a large local void, the model respects the
cosmological principle, further offering an explanation for the late onset of
the perceived acceleration as a consequence of the forming nonlinear
structures. Additional tests, such as quantitative predictions for angular
deviations due to an anisotropic void distribution and a theoretical derivation
of the model, can vindicate or falsify the interpretation that light
propagation in voids is responsible for the perceived acceleration.Comment: 33 pages, 2 figs; v2: minor clarifications, results unchanged; v3:
matches the version published in General Relativity and Gravitatio
Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams (AFTER)
A multi-purpose fixed-target experiment using the proton and lead-ion beams
of the LHC was recently proposed by Brodsky, Fleuret, Hadjidakis and Lansberg,
and here we concentrate our study on some issues related to the spin physics
part of this project (referred to as AFTER). We study the nucleon spin
structure through and processes with a fixed-target experiment using
the LHC proton beams, for the kinematical region with 7 TeV proton beams at the
energy in center-of-mass frame of two nucleons GeV. We calculate
and estimate the azimuthal asymmetries of unpolarized and
dilepton production processes in the Drell--Yan continuum region and at the
-pole. We also calculate the , and
azimuthal asymmetries of and dilepton production
processes with the target proton and deuteron longitudinally or transversally
polarized in the Drell--Yan continuum region and around resonances region.
We conclude that it is feasible to measure these azimuthal asymmetries,
consequently the three-dimensional or transverse momentum dependent parton
distribution functions (3dPDFs or TMDs), at this new AFTER facility.Comment: 15 pages, 40 figures. Version accepted for publication in EPJ
Ab initio Calculations of Multilayer Relaxations of Stepped Cu Surfaces
We present trends in the multilayer relaxations of several vicinals of
Cu(100) and Cu(111) of varying terrace widths and geometry. The electronic
structure calculations are based on density functional theory in the local
density approximation with norm-conserving, non-local pseudopotentials in the
mixed basis representation. While relaxations continue for several layers, the
major effect concentrates near the step and corner atoms. On all surfaces the
step atoms contract inwards, in agreement with experimental findings.
Additionally, the corner atoms move outwards and the atoms in the adjacent
chain undergo large inward relaxation. Correspondingly, the largest contraction
(4%) is in the bond length between the step atom and its bulk nearest neighbor
(BNN), while that between the corner atom and BNN is somewhat enlarged. The
surface atoms also display changes in registry of upto 1.5%. Our results are in
general in good agreement with LEED data including the controversial case of
Cu(511). Subtle differences are found with results obtained from semi-empirical
potentials.Comment: 21 pages and 3 figure
Today's View on Strangeness
There are several different experimental indications, such as the
pion-nucleon sigma term and polarized deep-inelastic scattering, which suggest
that the nucleon wave function contains a hidden s bar s component. This is
expected in chiral soliton models, which also predicted the existence of new
exotic baryons that may recently have been observed. Another hint of hidden
strangeness in the nucleon is provided by copious phi production in various N
bar N annihilation channels, which may be due to evasions of the
Okubo-Zweig-Iizuka rule. One way to probe the possible polarization of hidden s
bar s pairs in the nucleon may be via Lambda polarization in deep-inelastic
scattering.Comment: 8 pages LaTeX, 10 figures, to appear in the Proceedings of the
International Conference on Parity Violation and Hadronic Structure,
Grenoble, June 200
- …
