2 research outputs found

    Electronic localization at mesoscopic length scales: different definitions of localization and contact effects in a heuristic DNA model

    Full text link
    In this work we investigate the electronic transport along model DNA molecules using an effective tight-binding approach that includes the backbone on site energies. The localization length and participation number are examined as a function of system size, energy dependence, and the contact coupling between the leads and the DNA molecule. On one hand, the transition from an diffusive regime to a localized regime for short systems is identified, suggesting the necessity of a further length scale revealing the system borders sensibility. On the other hand, we show that the lenght localization and participation number, do not depended of system size and contact coupling in the thermodynamic limit. Finally we discuss possible length dependent origins for the large discrepancies among experimental results for the electronic transport in DNA sample

    1 Tight-Binding Modeling of Charge Migration in DNA Devices

    No full text
    Within the class of biopolymers, DNA is expected to play an outstanding role in molecular electronics [1]. This is mainly due to its unique self-assembling and self-recognition properties which are essential for its performance as carrier of the genetic code. It is the long-standing hope of many scientists tha
    corecore