7,879 research outputs found

    Direct identification of continuous second - order plus dead-time model

    Get PDF
    Describes a direct identification of continuous second - order plus dead-time model

    Relaxation of surface charge on rotating dielectric spheres: Implications on dynamic electrorheological effects

    Full text link
    We have examined the effect of an oscillatory rotation of a polarized dielectric particle. The rotational motion leads to a re-distribution of the polarization charge on the surface of the particle. We show that the time averaged steady-state dipole moment is along the field direction, but its magnitude is reduced by a factor which depends on the angular velocity of rotation. As a result, the rotational motion of the particle reduces the electrorheological effect. We further assume that the relaxation of polarized charge is arised from a finite conductivity of the particle or host medium. We calculate the relaxation time based on the Maxwell-Wagner theory, suitably generalized to include the rotational motion. Analytic expressions for the reduction factor and the relaxation time are given and their dependence on the angular velocity of rotation will be discussed.Comment: Accepted for publications by Phys. Rev.

    Stationary and Transient Work-Fluctuation Theorems for a Dragged Brownian Particle

    Full text link
    Recently Wang et al. carried out a laboratory experiment, where a Brownian particle was dragged through a fluid by a harmonic force with constant velocity of its center. This experiment confirmed a theoretically predicted work related integrated (I) Transient Fluctuation Theorem (ITFT), which gives an expression for the ratio for the probability to find positive or negative values for the fluctuations of the total work done on the system in a given time in a transient state. The corresponding integrated stationary state fluctuation theorem (ISSFT) was not observed. Using an overdamped Langevin equation and an arbitrary motion for the center of the harmonic force, all quantities of interest for these theorems and the corresponding non-integrated ones (TFT and SSFT, resp.) are theoretically explicitly obtained in this paper. While the (I)TFT is satisfied for all times, the (I)SSFT only holds asymptotically in time. Suggestions for further experiments with arbitrary velocity of the harmonic force and in which also the ISSFT could be observed, are given. In addition, a non-trivial long-time relation between the ITFT and the ISSFT was discovered, which could be observed experimentally, especially in the case of a resonant circular motion of the center of the harmonic force.Comment: 20 pages, 3 figure

    On the Fluctuation Relation for Nose-Hoover Boundary Thermostated Systems

    Full text link
    We discuss the transient and steady state fluctuation relation for a mechanical system in contact with two deterministic thermostats at different temperatures. The system is a modified Lorentz gas in which the fixed scatterers exchange energy with the gas of particles, and the thermostats are modelled by two Nos\'e-Hoover thermostats applied at the boundaries of the system. The transient fluctuation relation, which holds only for a precise choice of the initial ensemble, is verified at all times, as expected. Times longer than the mesoscopic scale, needed for local equilibrium to be settled, are required if a different initial ensemble is considered. This shows how the transient fluctuation relation asymptotically leads to the steady state relation when, as explicitly checked in our systems, the condition found in [D.J. Searles, {\em et al.}, J. Stat. Phys. 128, 1337 (2007)], for the validity of the steady state fluctuation relation, is verified. For the steady state fluctuations of the phase space contraction rate \zL and of the dissipation function \zW, a similar relaxation regime at shorter averaging times is found. The quantity \zW satisfies with good accuracy the fluctuation relation for times larger than the mesoscopic time scale; the quantity \zL appears to begin a monotonic convergence after such times. This is consistent with the fact that \zW and \zL differ by a total time derivative, and that the tails of the probability distribution function of \zL are Gaussian.Comment: Major revision. Fig.10 was added. Version to appear in Journal of Statistical Physic

    The Steady State Fluctuation Relation for the Dissipation Function

    Get PDF
    We give a proof of transient fluctuation relations for the entropy production (dissipation function) in nonequilibrium systems, which is valid for most time reversible dynamics. We then consider the conditions under which a transient fluctuation relation yields a steady state fluctuation relation for driven nonequilibrium systems whose transients relax, producing a unique nonequilibrium steady state. Although the necessary and sufficient conditions for the production of a unique nonequilibrium steady state are unknown, if such a steady state exists, the generation of the steady state fluctuation relation from the transient relation is shown to be very general. It is essentially a consequence of time reversibility and of a form of decay of correlations in the dissipation, which is needed also for, e.g., the existence of transport coefficients. Because of this generality the resulting steady state fluctuation relation has the same degree of robustness as do equilibrium thermodynamic equalities. The steady state fluctuation relation for the dissipation stands in contrast with the one for the phase space compression factor, whose convergence is problematic, for systems close to equilibrium. We examine some model dynamics that have been considered previously, and show how they are described in the context of this work.Comment: 30 pages, 1 figur

    Exact Eigenfunctions of NN-Body system with Quadratic Pair Potential

    Full text link
    We obtain all the exact eigenvalues and the corresponding eigenfunctions of NN-body Bose and Fermi systems with Quadratic Pair Potentials in one dimension. The originally existed first excited state level is missing in one dimension, which results from the operation of symmetry or antisymmetry of identical particles. In two and higher dimensions, we give all the eigenvalues and the analytical ground state wave functions and the number of degeneracy. Through the comparison with Avinash Khare's results, we have perfected his results.Comment: 7 pages,1 figur

    Structured light techniques for 3D surface reconstruction in robotic tasks

    Get PDF
    Robotic tasks such as navigation and path planning can be greatly enhanced by a vision system capable of providing depth perception from fast and accurate 3D surface reconstruction. Focused on robotic welding tasks we present a comparative analysis of a novel mathematical formulation for 3D surface reconstruction and discuss image processing requirements for reliable detection of patterns in the image. Models are presented for a parallel and angled configurations of light source and image sensor. It is shown that the parallel arrangement requires 35\% fewer arithmetic operations to compute a point cloud in 3D being thus more appropriate for real-time applications. Experiments show that the technique is appropriate to scan a variety of surfaces and, in particular, the intended metallic parts for robotic welding tasks

    A dynamical dark energy model with a given luminosity distance

    Full text link
    It is assumed that the current cosmic acceleration is driven by a scalar field, the Lagrangian of which is a function of the kinetic term only, and that the luminosity distance is a given function of the red-shift. Upon comparison with Baryon Acoustic Oscillations (BAOs) and Cosmic Microwave Background (CMB) data the parameters of the models are determined, and then the time evolution of the scalar field is determined by the dynamics using the cosmological equations. We find that the solution is very different than the corresponding solution when the non-relativistic matter is ignored, and that the universe enters the acceleration era at larger red-shift compared to the standard ΛCDM\Lambda CDM model.Comment: 4 pages, 3 figures, accepted for publication in GER

    Electronic Raman scattering in quantum dots revisited

    Full text link
    We present theoretical results concerning inelastic light (Raman) scattering from semiconductor quantum dots. The characteristics of each dot state (whether it is a collective or single-particle excitation, its multipolarity, and its spin) are determined independently of the Raman spectrum, in such a way that common beliefs used for level assignments in experimental spectra can be tested. We explore the usefulness of below band gap excitation and an external magnetic field to identify charge and spin excited states of a collective or single-particle nature.Comment: To appear in a special issue of Solid State Communications dedicated to Eli Burstei

    Spin Squeezing in the Ising Model

    Get PDF
    We analyze the collective spin noise in interacting spin systems. General expressions are derived for the short time behaviour of spin systems with general spin-spin interactions, and we suggest optimum experimental conditions for the detection of spin squeezing. For Ising models with site dependent nearest neighbour interactions general expressions are presented for the spin squeezing parameter for all times. The reduction of collective spin noise can be used to verify the entangling powers of quantum computer architectures based on interacting spins.Comment: 7 pages, including 3 figure
    corecore