5 research outputs found

    Stability of Monomer-Dimer Piles

    Full text link
    We measure how strong, localized contact adhesion between grains affects the maximum static critical angle, theta_c, of a dry sand pile. By mixing dimer grains, each consisting of two spheres that have been rigidly bonded together, with simple spherical monomer grains, we create sandpiles that contain strong localized adhesion between a given particle and at most one of its neighbors. We find that tan(theta_c) increases from 0.45 to 1.1 and the grain packing fraction, Phi, decreases from 0.58 to 0.52 as we increase the relative number fraction of dimer particles in the pile, nu_d, from 0 to 1. We attribute the increase in tan(theta_c(nu_d)) to the enhanced stability of dimers on the surface, which reduces the density of monomers that need to be accomodated in the most stable surface traps. A full characterization and geometrical stability analysis of surface traps provides a good quantitative agreement between experiment and theory over a wide range of nu_d, without any fitting parameters.Comment: 11 pages, 12 figures consisting of 21 eps files, submitted to PR

    Angle of repose and segregation in cohesive granular matter

    Full text link
    We study the effect of fluids on the angle of repose and the segregation of granular matter poured into a silo. The experiments are conducted in two regimes where: (i) the volume fraction of the fluid is small and it forms liquid bridges between particles, and (ii) the particles are completely immersed in the fluid. The data is obtained by imaging the pile formed inside a quasi-two dimensional silo through the transparent glass side walls. In the first series of experiments, the angle of repose is observed to increase sharply with the volume fraction of the fluid and then saturates at a value that depends on the size of the particles. We systematically study the effect of viscosity by using water-glycerol mixtures to vary it over at least three orders of magnitude while keeping the surface tension almost constant. Besides surface tension, the viscosity of the fluid is observed to have an effect on the angle of repose and the extent of segregation. In case of bidisperse particles, segregation is observed to decrease and finally saturate depending on the size ratio of the particles and the viscosity of the fluid. The sharp initial change and the subsequent saturation in the extent of segregation and angle of repose occurs over similar volume fraction of the fluid. In the second series of experiments, particles are poured into a container filled with a fluid. Although the angle of repose is observed to be unchanged, segregation is observed to decrease with an increase in the viscosity of the fluid.Comment: 9 pages, 12 figure

    Dynamics of electrostatically-driven granular media. Effects of Humidity

    Full text link
    We performed experimental studies of the effect of humidity on the dynamics of electrostatically-driven granular materials. Both conducting and dielectric particles undergo a phase transition from an immobile state (granular solid) to a fluidized state (granular gas) with increasing applied field. Spontaneous precipitation of solid clusters from the gas phase occurs as the external driving is decreased. The clustering dynamics in conducting particles is primarily controlled by screening of the electric field but is aided by cohesion due to humidity. It is shown that humidity effects dominate the clustering process with dielectric particles.Comment: 4 pages, 4 fig

    Temperature dependence of the charge carrier mobility in gated quasi-one-dimensional systems

    Full text link
    The many-body Monte Carlo method is used to evaluate the frequency dependent conductivity and the average mobility of a system of hopping charges, electronic or ionic on a one-dimensional chain or channel of finite length. Two cases are considered: the chain is connected to electrodes and in the other case the chain is confined giving zero dc conduction. The concentration of charge is varied using a gate electrode. At low temperatures and with the presence of an injection barrier, the mobility is an oscillatory function of density. This is due to the phenomenon of charge density pinning. Mobility changes occur due to the co-operative pinning and unpinning of the distribution. At high temperatures, we find that the electron-electron interaction reduces the mobility monotonically with density, but perhaps not as much as one might intuitively expect because the path summation favour the in-phase contributions to the mobility, i.e. the sequential paths in which the carriers have to wait for the one in front to exit and so on. The carrier interactions produce a frequency dependent mobility which is of the same order as the change in the dc mobility with density, i.e. it is a comparably weak effect. However, when combined with an injection barrier or intrinsic disorder, the interactions reduce the free volume and amplify disorder by making it non-local and this can explain the too early onset of frequency dependence in the conductivity of some high mobility quasi-one-dimensional organic materials.Comment: 9 pages, 8 figures, to be published in Physical Review

    Nanodevices in Biomedical Applications

    No full text
    corecore