55 research outputs found
Critical currents in Josephson junctions, with unconventional pairing symmetry: versus
Phenomenological Ginzburg-Landau theory is used to calculate the possible
spontaneous vortex states that may exist at corner junctions of
-wave, (where or ) and s-wave superconductors.
We study the magnetic flux and the critical current modulation with the
junction orientation angle , the magnitude of the order parameter, and
the magnetic field . It is seen that the critical current versus the
magnetic flux relation is symmetric / asymmetric for when
the orientation is exactly such that the lobes of the dominant
-wave order parameter points towards the two junctions, which are
at right angles for the corner junction. The conclusion is that a measurement
of the relation may distinguish which symmetry ( or
) the order parameter has.Comment: 11 pages with 11 figures, Changed conten
Josephson effect test for triplet pairing symmetry
The critical current modulation and the spontaneous flux of the vortex states
in corner Josephson junctions between SrRuO and a conventional s-wave
superconductor are calculated as a function of the crystal orientation, and the
magnetic field. For SrRuO we assume two nodeless p-wave pairing states.
Also we use the nodal -wave states and , and one special p-wave state having line nodes. It is seen that the
critical current depends solely on the topology of the gap.Comment: 22 pages, 12 figure
Periodic alternating -junction structures as realization of -Josephson junctions
We consider the properties of a periodic structure consisting of small
alternating 0- and pi- Josephson junctions. We show that depending on the
relation between the lengths of the individual junctions, this system can be
either in the homogeneous or in the phase-modulated state. The modulated phase
appears via a second order phase transition when the mismatch between the
lengths of the individual junctions exceeds the critical value. The screening
length diverges at the transition point. In the modulated state, the
equilibrium phase difference in the structure can take any value from -pi to pi
(phi-junction). The current-phase relation in this structure has very unusual
shape with two maxima. As a consequence, the field dependence of the critical
current in a small structure is very different from the standard Fraunhofer
dependence. The Josephson vortex in a long structure carries partial magnetic
flux, which is determined by the equilibrium phase.Comment: 4 pages, 3 figues, submitted to Phys. Rev.
Electrodynamics of quasi-two-dimensional BEDT-TTF charge transfer salts
We consider the millimeter-wave electrodynamics specific to
quasi-two-dimensional conductors and superconductors based on the organic donor
molecule BEDT-TTF. Using realistic physical parameters, we examine the current
polarizations that result for different oscillating (GHz) electric and magnetic
field polarizations. We show that, in general, it is possible to discriminate
between effects (dissipation and dispersion) due to in-plane and interlayer ac
currents. However, we also show that it is not possible to selectively probe
any single component of the in-plane conductivity tensor, and that excitation
of interlayer currents is strongly influenced by the sample geometry and the
electromagnetic field polarization.Comment: 5 pages including 3 figures Minor correction to figure
Mixed symmetry superconductivity in two-dimensional Fermi liquids
We consider a 2D isotropic Fermi liquid with attraction in both and
channels and examine the possibility of a superconducting state with mixed
and symmetry of the gap function. We show that both in the weak coupling
limit and at strong coupling, a mixed symmetry state is realized in a
certain range of interaction. Phase transitions between the mixed and the pure
symmetry states are second order. We also show that there is no stable mixed
symmetry state at any coupling.Comment: 3 figures attached in uuencoded gzipped file
Magnetic-interference patterns in Josephson junctions with d+is symmetry
The magnetic interference pattern and the spontaneous flux in unconventional
Josephson junctions of superconductors with d+is symmetry are calculated for
different reduced junction lengths and the relative factor of the d and s wave
components. This is a time reversal broken symmetry state. We study the
stability of the fractional vortex and antivortex which are spontaneously
formed and examine their evolution as we change the length and the relative
factor of d and s wave components. The asymmetry in the field modulated
diffraction pattern exists for lengths as long as L=10\lambda_J.Comment: 8 pages, 6 eps files, submitted to PR
Competing effects of mass anisotropy and spin Zeeman coupling on the upper critical field of a mixed - and s-wave superconductor
Based on the linearized Eilenberger equations, the upper critical field
of mixed d- and s-wave superconductors has been microscopically
studied with an emphasis on the competing effects of mass anisotropy and spin
Zeeman coupling. We find the mass anisotropy always enhance while the
Zeeman interaction suppresses . As required by the thermodynamics, we
find is saturated at zero temperature. We compare the theoretical
calculations with recent experimental data of
YBaCuO.Comment: To appear in PRB in Feb. 200
Josephson current in unconventional superconductors through an Anderson impurity
Josephson current for a system consisting of an Anderson impurity weakly
coupled to two unconventional superconductors is studied and shown to be driven
by a surface zero energy (mid-gap) bound-state. The repulsive Coulomb
interaction in the dot can turn a junction into a 0-junction. This effect
is more pronounced in p-wave superconductors while in high-temperature
superconductors with symmetry it can exit for rather large
artificial centers at which tunneling occurs within a finite region.Comment: 4 pages 3.eps figure
Self-generated magnetic flux in YBaCuO grain boundaries
Grain boundaries in YBaCuO superconducting films are
considered as Josephson junctions with a critical current density
alternating along the junction. A self-generated magnetic flux is treated both
analytically and numerically for an almost periodic distribution of .
We obtained a magnetic flux-pattern similar to the one which was recently
observed experimentally.Comment: 7 pages, 3 figure
Josephson Coupling through a Quantum Dot
We derive, via fourth order perturbation theory, an expression for the
Josephson current through a gated interacting quantum dot. We analyze our
expression for two different models of the superconductor-dot-superconductor
(SDS) system. When the matrix elements connecting dot and leads are featureless
constants, we compute the Josephson coupling J_c as a function of the gate
voltage and Coulomb interaction. In the diffusive dot limit, we compute the
probability distribution P(J_c) of Josephson couplings. In both cases, pi
junction behavior (J_c < 0) is possible, and is not simply dependent on the
parity of the dot occupancy.Comment: 9 pages; 3 encapsulated PostScript figure
- …