55 research outputs found

    Critical currents in Josephson junctions, with unconventional pairing symmetry: dx2−y2+isd_{x^2-y^2}+is versus dx2−y2+idxyd_{x^2-y^2}+id_{xy}

    Full text link
    Phenomenological Ginzburg-Landau theory is used to calculate the possible spontaneous vortex states that may exist at corner junctions of dx2−y2+ixd_{x^2-y^2}+ix-wave, (where x=sx=s or x=dxyx=d_{xy}) and s-wave superconductors. We study the magnetic flux and the critical current modulation with the junction orientation angle θ\theta, the magnitude of the order parameter, and the magnetic field HH. It is seen that the critical current IcI_c versus the magnetic flux Φ\Phi relation is symmetric / asymmetric for x=dxy/sx=d_{xy}/s when the orientation is exactly such that the lobes of the dominant dx2−y2d_{x^2-y^2}-wave order parameter points towards the two junctions, which are at right angles for the corner junction. The conclusion is that a measurement of the Ic(Φ)I_c(\Phi) relation may distinguish which symmetry (dx2−y2+isd_{x^2-y^2}+is or dx2−y2+idxyd_{x^2-y^2}+id_{xy}) the order parameter has.Comment: 11 pages with 11 figures, Changed conten

    Josephson effect test for triplet pairing symmetry

    Full text link
    The critical current modulation and the spontaneous flux of the vortex states in corner Josephson junctions between Sr2_2RuO4_4 and a conventional s-wave superconductor are calculated as a function of the crystal orientation, and the magnetic field. For Sr2_2RuO4_4 we assume two nodeless p-wave pairing states. Also we use the nodal ff-wave states B1g×EuB_{1g}\times E_u and B2g×EuB_{2g} \times E_u, and one special p-wave state having line nodes. It is seen that the critical current depends solely on the topology of the gap.Comment: 22 pages, 12 figure

    Periodic alternating 0,Ï€0,\pi-junction structures as realization of Ï•\phi-Josephson junctions

    Full text link
    We consider the properties of a periodic structure consisting of small alternating 0- and pi- Josephson junctions. We show that depending on the relation between the lengths of the individual junctions, this system can be either in the homogeneous or in the phase-modulated state. The modulated phase appears via a second order phase transition when the mismatch between the lengths of the individual junctions exceeds the critical value. The screening length diverges at the transition point. In the modulated state, the equilibrium phase difference in the structure can take any value from -pi to pi (phi-junction). The current-phase relation in this structure has very unusual shape with two maxima. As a consequence, the field dependence of the critical current in a small structure is very different from the standard Fraunhofer dependence. The Josephson vortex in a long structure carries partial magnetic flux, which is determined by the equilibrium phase.Comment: 4 pages, 3 figues, submitted to Phys. Rev.

    Electrodynamics of quasi-two-dimensional BEDT-TTF charge transfer salts

    Full text link
    We consider the millimeter-wave electrodynamics specific to quasi-two-dimensional conductors and superconductors based on the organic donor molecule BEDT-TTF. Using realistic physical parameters, we examine the current polarizations that result for different oscillating (GHz) electric and magnetic field polarizations. We show that, in general, it is possible to discriminate between effects (dissipation and dispersion) due to in-plane and interlayer ac currents. However, we also show that it is not possible to selectively probe any single component of the in-plane conductivity tensor, and that excitation of interlayer currents is strongly influenced by the sample geometry and the electromagnetic field polarization.Comment: 5 pages including 3 figures Minor correction to figure

    Mixed symmetry superconductivity in two-dimensional Fermi liquids

    Full text link
    We consider a 2D isotropic Fermi liquid with attraction in both ss and dd channels and examine the possibility of a superconducting state with mixed ss and dd symmetry of the gap function. We show that both in the weak coupling limit and at strong coupling, a mixed s+ids+id symmetry state is realized in a certain range of interaction. Phase transitions between the mixed and the pure symmetry states are second order. We also show that there is no stable mixed s+ds+d symmetry state at any coupling.Comment: 3 figures attached in uuencoded gzipped file

    Magnetic-interference patterns in Josephson junctions with d+is symmetry

    Full text link
    The magnetic interference pattern and the spontaneous flux in unconventional Josephson junctions of superconductors with d+is symmetry are calculated for different reduced junction lengths and the relative factor of the d and s wave components. This is a time reversal broken symmetry state. We study the stability of the fractional vortex and antivortex which are spontaneously formed and examine their evolution as we change the length and the relative factor of d and s wave components. The asymmetry in the field modulated diffraction pattern exists for lengths as long as L=10\lambda_J.Comment: 8 pages, 6 eps files, submitted to PR

    Competing effects of mass anisotropy and spin Zeeman coupling on the upper critical field of a mixed dd- and s-wave superconductor

    Full text link
    Based on the linearized Eilenberger equations, the upper critical field (Hc2)(H_{c2}) of mixed d- and s-wave superconductors has been microscopically studied with an emphasis on the competing effects of mass anisotropy and spin Zeeman coupling. We find the mass anisotropy always enhance Hc2H_{c2} while the Zeeman interaction suppresses Hc2H_{c2}. As required by the thermodynamics, we find Hc2H_{c2} is saturated at zero temperature. We compare the theoretical calculations with recent experimental data of YBa2_{2}Cu3_{3}O7−+AFw−delta_{7-+AFw-delta}.Comment: To appear in PRB in Feb. 200

    Josephson current in unconventional superconductors through an Anderson impurity

    Full text link
    Josephson current for a system consisting of an Anderson impurity weakly coupled to two unconventional superconductors is studied and shown to be driven by a surface zero energy (mid-gap) bound-state. The repulsive Coulomb interaction in the dot can turn a π\pi junction into a 0-junction. This effect is more pronounced in p-wave superconductors while in high-temperature superconductors with dx2−y2d_{x^2-y^2} symmetry it can exit for rather large artificial centers at which tunneling occurs within a finite region.Comment: 4 pages 3.eps figure

    Self-generated magnetic flux in YBa2_2Cu3_3O7−x_{7-x} grain boundaries

    Full text link
    Grain boundaries in YBa2_2Cu3_3O7−x_{7-x} superconducting films are considered as Josephson junctions with a critical current density jc(x)j_c(x) alternating along the junction. A self-generated magnetic flux is treated both analytically and numerically for an almost periodic distribution of jc(x)j_c(x). We obtained a magnetic flux-pattern similar to the one which was recently observed experimentally.Comment: 7 pages, 3 figure

    Josephson Coupling through a Quantum Dot

    Full text link
    We derive, via fourth order perturbation theory, an expression for the Josephson current through a gated interacting quantum dot. We analyze our expression for two different models of the superconductor-dot-superconductor (SDS) system. When the matrix elements connecting dot and leads are featureless constants, we compute the Josephson coupling J_c as a function of the gate voltage and Coulomb interaction. In the diffusive dot limit, we compute the probability distribution P(J_c) of Josephson couplings. In both cases, pi junction behavior (J_c < 0) is possible, and is not simply dependent on the parity of the dot occupancy.Comment: 9 pages; 3 encapsulated PostScript figure
    • …
    corecore