59 research outputs found
--Dependence of the Gerasimov-Drell-Hearn Sum Rule
We test the Gerasimov-Drell-Hearn (GDH) sum rule numerically by calculating
the total photon absorption cross sections and on
the nucleon via photon excitation of baryon resonances in the constituent quark
model. A total of seventeen, low-lying, non-strange baryon resonances are
included in this calculation. The transverse and longitudinal interference
cross section, , is found to play an important role in the
study of the variation of the sum rule. The results show that the GDH sum
rule is saturated by these resonances at a confidence level of 94%. In
particular, the excitation largely saturates the sum rule at
, and dominates at small . The GDH integral has a strong
-dependence below and changes its sign around . It becomes weakly -dependent for because of
the quick decline of the resonance contributions. We point out that the
variation of the GDH sum rule is very important for understanding the nucleon
spin structure in the non-perturbative QCD region.Comment: revtex, 17 pages, 3 ps figs include
Developing specialist leaders of education: a research engagement approach
There has been little research to date on the continuing professional
development needs of the several thousand Specialist Leaders of
Education (SLE) now designated by the National College for Teaching
and Leadership in England to work across schools as consultants on
school-to-school support. This case study reports on the second and
third stages of a four-stage research process designed to address these
needs. The
fi
rst stage reported on the creation of a professional devel-
opment framework for SLE
â
s using consultancy research. These middle
stages test out this framework with a stakeholder group of SLEs, head-
teachers and broker in a Teaching Schools Alliance. The fourth stage will
track the implementation of professional development activities arising
from these
fi
ndings. Apart from the speci
fi
c needs of SLE, this study will
have wider relevance for all practitioners and researchers working in and
with schools on leadership development using Research Engagement
strategies and Joint Practice Development approaches in a so-called
â
self-
improving
â
school system
Deuteron Electroweak Disintegration
We study the deuteron electrodisintegration with inclusion of the neutral
currents focusing on the helicity asymmetry of the exclusive cross section in
coplanar geometry. We stress that a measurement of this asymmetry in the quasi
elastic region is of interest for an experimental determination of the weak
form factors of the nucleon, allowing one to obtain the parity violating
electron neutron asymmetry. Numerically, we consider the reaction at low
momentum transfer and discuss the sensitivity of the helicity asymmetry to the
strangeness radius and magnetic moment. The problems coming from the finite
angular acceptance of the spectrometers are also considered.Comment: 30 pages, Latex, 7 eps figures, submitted to Phys.Rev.C e-mail:
[email protected] , [email protected]
The Isgur-Wise function in a relativistic model for system
We use the Dirac equation with a ``(asymptotically free) Coulomb + (Lorentz
scalar) linear '' potential to estimate the light quark wavefunction for mesons in the limit . We use these wavefunctions to
calculate the Isgur-Wise function for orbital and radial
ground states in the phenomenologically interesting range . We find a simple expression for the zero-recoil slope, , where is the energy eigenvalue
of the light quark, which can be identified with the parameter
of the Heavy Quark Effective Theory. This result implies an upper bound of
for the slope . Also, because for a very light quark the size of the meson is determined mainly by the
``confining'' term in the potential , the shape of
is seen to be mostly sensitive to the dimensionless
ratio . We present results for the ranges of
parameters , and
light quark masses and compare to existing
experimental data and other theoretical estimates. Fits to the data give:
,
and [ARGUS
'93]; , and
[CLEO '93]; ${\bar\Lambda_{u,d}}^2/Comment: 22 pages, Latex, 4 figures (not included) available by fax or via
email upon reques
The Proton Spin and Flavor Structure in the Chiral Quark Model
After a pedagogical review of the simple constituent quark model and deep
inelastic sum rules, we describe how a quark sea as produced by the emission of
internal Goldstone bosons by the valence quarks can account for the observed
features of proton spin and flavor structures. Some issues concerning the
strange quark content of the nucleon are also discussed.Comment: 59 pages with table of contents, Lecture delivered at the Schladming
Winter School (March 1997), to be published by Springer-Verlag under the
title "Computing Particle Properties" (eds. C. B. Lang and H. Gausterer
Parity violating target asymmetry in electron - proton scattering
We analyze the parity-violating (PV) components of the analyzing power in
elastic electron-proton scattering and discuss their sensitivity to the strange
quark contributions to the proton weak form factors. We point out that the
component of the analyzing power along the momentum transfer is independent of
the electric weak form factor and thus compares favorably with the PV beam
asymmetry for a determination of the strangeness magnetic moment. We also show
that the transverse component could be used for constraining the strangeness
radius. Finally, we argue that a measurement of both components could give
experimental information on the strangeness axial charge.Comment: 24 pages, Latex, 5 eps figures, submitted to Phys.Rev.
Microscopic study of freeze-out in relativistic heavy ion collisions at SPS energies
The freeze-out conditions in the light (S+S) and heavy (Pb+Pb) colliding
systems of heavy nuclei at 160 AGeV/ are analyzed within the microscopic
Quark Gluon String Model (QGSM). We found that even for the most heavy systems
particle emission takes place from the whole space-time domain available for
the system evolution, but not from the thin ''freeze-out hypersurface", adopted
in fluid dynamical models. Pions are continuously emitted from the whole volume
of the reaction and reflect the main trends of the system evolution. Nucleons
in Pb+Pb collisions initially come from the surface region. For both systems
there is a separation of the elastic and inelastic freeze-out. The mesons with
large transverse momenta, , are predominantly produced at the early stages
of the reaction. The low -component is populated by mesons coming mainly
from the decay of resonances. This explains naturally the decreasing source
sizes with increasing , observed in HBT interferometry. Comparison with
S+S and Au+Au systems at 11.6 AGeV/ is also presented.Comment: REVTEX, 26 pages incl. 9 figures and 2 tables, to be published in the
Physical Review
Partial wave analysis of J/\psi \to \gamma \phi \phi
Using events collected in the BESII detector, the
radiative decay is
studied. The invariant mass distribution exhibits a near-threshold
enhancement that peaks around 2.24 GeV/.
A partial wave analysis shows that the structure is dominated by a
state () with a mass of
GeV/ and a width of GeV/. The
product branching fraction is: .Comment: 11 pages, 4 figures. corrected proof for journa
Effective Lagrangian Approach to the Theory of Eta Photoproduction in the Region
We investigate eta photoproduction in the resonance region
within the effective Lagrangian approach (ELA), wherein leading contributions
to the amplitude at the tree level are taken into account. These include the
nucleon Born terms and the leading -channel vector meson exchanges as the
non-resonant pieces. In addition, we consider five resonance contributions in
the - and - channel; besides the dominant , these are:
and . The amplitudes for the
and the photoproduction near threshold have significant
differences, even as they share common contributions, such as those of the
nucleon Born terms. Among these differences, the contribution to the
photoproduction of the -channel excitation of the is the most
significant. We find the off-shell properties of the spin-3/2 resonances to be
important in determining the background contributions. Fitting our effective
amplitude to the available data base allows us to extract the quantity
, characteristic of the
photoexcitation of the resonance and its decay into the
-nucleon channel, of interest to precise tests of hadron models. At the
photon point, we determine it to be from
the old data base, and from a
combination of old data base and new Bates data. We obtain the helicity
amplitude for to be from the old data base, and from the combination of the old data base and new Bates
data, compared with the results of the analysis of pion photoproduction
yielding , in the same units.Comment: 43 pages, RevTeX, 9 figures available upon request, to appear in
Phys. Rev.
Quark Model and multiquark system
The discovery of many particles, especially in the 50's, when the firsts
accelerators appeared, caused the searching for a model that would describe in
a simple form the whole of known particles. The Quark Model, based in the
mathematical structures of group theory, provided in the beginning of the 60's
a simplified description of hadronic matter already known, proposing that three
particles, called quarks, would originate all the observed hadrons. This model
was able to preview the existence of particles that were later detected,
confirming its consistency. Extensions of the Quark Model were made in the
beginning of the 70's, focusing in describing observed particles that were
excited states of the fundamental particles and others that presented new
quantum numbers (flavors). Recently, exotic states as tetraquarks and
pentaquarks types, also called multiquarks systems, previewed by the model,
were observed, what renewed the interest in the way as quarks are confined
inside the hadrons. In this article we present a review of the Quark Model and
a discussion on the new exotic states.Comment: In Portugues
- âŠ