4 research outputs found

    New insights into triaxiality and shape coexistence from odd-mass 109^{109}Rh

    No full text
    International audienceRapid shape evolutions near A=100 are now the focus of much attention in nuclear science. Much of the recent work has been centered on isotopes with Z≤40, where the shapes are observed to transition between near-spherical to highly deformed with only a single pair of neutrons added. At higher Z, the shape transitions become more gradual as triaxiality sets in, yet the coexistence of varying shapes continues to play an important role in the low-energy nuclear structure, particularly in the odd-Z isotopes. This work aims to characterize competing shapes in the triaxial region between Zr and Sn isotopes using ultrafast timing techniques to measure lifetimes of excited states in the neutron-rich nucleus Rh109. The measurements confirm the persistence at higher Z of similarly large deformations observed near Z=40. Moreover, we show that new self-consistent mean-field calculations, with proper treatment of the odd nucleon, are able to reproduce the coexisting triaxial and highly deformed configurations revealing, for the first time, the important contribution of the unpaired nucleon to these different shapes based on the blocking of specific single-particle orbitals

    Low-spin excitations in

    No full text
    The low-spin excitations of the nucleus 146Sm which is just two neutrons and two protons away from the N = 82 shell and Z = 64 subshell closures have been investigated by means of the 143Nd (α, n) and 144Nd (α, 2n) fusion-evaporation reactions. We established 47 hitherto unknown energy levels up to 4.7MeV and 75 new transitions. In addition, 7 spin assignments were possible from the γ-γ angular correlation analysis. The structure of the possible candidates for a 2+ ⊗ 3− quadrupole-octupole multiplet are first discussed in terms of the harmonic vibrational model. A comparison of these states with the corresponding ones in the neighboring N = 84 isotones is also presented. Finally, the structure of the 146Sm nucleus is interpreted in terms of the IBA-spdf model. It is shown that the model is able to reproduce the experimental relative transition strengths of the 2+ ⊗ 3− quadrupole-octupole multiplet and also a series of collective properties such as the proposed double-octupole excitations
    corecore