1 research outputs found
Aspects of electrostatics in a weak gravitational field
Several features of electrostatics of point charged particles in a weak,
homogeneous, gravitational field are discussed using the Rindler metric to
model the gravitational field. Some previously known results are obtained by
simpler and more transparent procedures and are interpreted in an intuitive
manner. Specifically: (i) We show that the electrostatic potential of a charge
at rest in the Rindler frame is expressible as A_0=(q/l) where l is the affine
parameter distance along the null geodesic from the charge to the field point.
(ii) We obtain the sum of the electrostatic forces exerted by one charge on
another in the Rindler frame and discuss its interpretation. (iii) We show how
a purely electrostatic term in the Rindler frame appears as a radiation term in
the inertial frame. (In part, this arises because charges at rest in a weak
gravitational field possess additional weight due to their electrostatic
energy. This weight is proportional to the acceleration and falls inversely
with distance -- which are the usual characteristics of a radiation field.)
(iv) We also interpret the origin of the radiation reaction term by extending
our approach to include a slowly varying acceleration. Many of these results
might have possible extensions for the case of electrostatics in an arbitrary
static geometry. [Abridged Abstract]Comment: 26 pages; accepted for publication in Gen.Rel.Gra