15 research outputs found
XXVI IUPAP Conference on Computational Physics (CCP2014)
The 26th IUPAP Conference on Computational Physics, CCP2014, was held in Boston, Massachusetts, during August 11-14, 2014. Almost 400 participants from 38 countries convened at the George Sherman Union at Boston University for four days of plenary and parallel sessions spanning a broad range of topics in computational physics and related areas.
The first meeting in the series that developed into the annual Conference on Computational Physics (CCP) was held in 1989, also on the campus of Boston University and chaired by our colleague Claudio Rebbi. The express purpose of that meeting was to discuss the progress, opportunities and challenges of common interest to physicists engaged in computational research. The conference having returned to the site of its inception, it is interesting to recect on the development of the field during the intervening years. Though 25 years is a short time for mankind, computational physics has taken giant leaps during these years, not only because of the enormous increases in computer power but especially because of the development of new methods and algorithms, and the growing awareness of the opportunities the new technologies and methods can offer. Computational physics now represents a ''third leg'' of research alongside analytical theory and experiments in almost all subfields of physics, and because of this there is also increasing specialization within the community of computational physicists. It is therefore a challenge to organize a meeting such as CCP, which must have suffcient depth in different areas to hold the interest of experts while at the same time being broad and accessible. Still, at a time when computational research continues to gain in importance, the CCP series is critical in the way it fosters cross-fertilization among fields, with many participants specifically attending in order to get exposure to new methods in fields outside their own.
As organizers and editors of these Proceedings, we are very pleased with the high quality of the papers provided by the participants. These articles represent a good cross-section of what was presented at the meeting, and it is our hope that they will not only be useful individually for their specific scientific content but will also represent a historical snapshot of the state of computational physics that they represent collectively.
The remainder of this Preface contains lists detailing the organizational structure of CCP2014, endorsers and sponsors of the meeting, plenary and invited talks, and a presentation of the 2014 IUPAP C20 Young Scientist Prize.
We would like to take the opportunity to again thank all those who contributed to the success of CCP214, as organizers, sponsors, presenters, exhibitors, and participants.
Anders Sandvik, David Campbell, David Coker, Ying TangPublished versio
A semiclassical limit for the mapping Hamiltonian approach to electronically nonadiabatic dynamics
The stationary phase evaluation of mapping Hamiltonian propagator is presented. The development of semiclassical dynamic approach describing system of electron and nuclie is explored. All possible avenues for energy exchange between paticles is allowed. The semiclassical limit of dynamics corresponding to the mapping Hamiltonians formulation is derived. The adiabatic approach restricts the flow of energy between the electronic and nuclear degrees of freedom
Phosphorene oxides: Bandgap engineering of phosphorene by oxidation
10.1103/PhysRevB.91.085407Physical Review B - Condensed Matter and Materials Physics91
Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere
10.1038/ncomms7647Nature Communications