51 research outputs found

    Photon and dilepton emission rates from high density quark matter

    Full text link
    We compute the rates of real and virtual photon (dilepton) emission from dense QCD matter in the color-flavor locked (CFL) phase, focusing on results at moderate densities (3-5 times the nuclear saturation density) and temperatures T≃80T\simeq80 MeV. We pursue two approaches to evaluate the electromagnetic (e.m.) response of the CFL ground state: (i) a direct evaluation of the photon self energy using quark particle/-hole degrees of freedom, and (ii) a Hidden Local Symmetry (HLS) framework based on generalized mesonic excitations where the ρ\rho meson is introduced as a gauge boson of a local SU(3) color-flavor group. The ρ\rho coupling to generalized two-pion states induces a finite width and allows to address the issue of vector meson dominance (VMD) in the CFL phase. We compare the calculated emissivities (dilepton rates) to those arising from standard hadronic approaches including in-medium effects. For rather large superconducting gaps (several tens of MeV at moderate densities), as suggested by both perturbative and nonperturbative estimates, the dilepton rates from CFL quark matter turn out to be very similar to those obtained in hadronic many-body calculations, especially for invariant masses above M≃0.3M\simeq0.3 GeV. A similar observation holds for (real) photon production.Comment: 18 pages, 12 figure

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    XXXVIII. The formation of the helium film

    Full text link

    Towards measuring nuclear-spin-dependent and isotopic-chain atomic parity violation in ytterbium

    Full text link
    We discuss experiments aimed at measurements of atomic parity nonconservation (PNC) effects in the 1S0-3D1 transition (408 nm) in atomic Ytterbium (Z=70). According to theoretical predictions, the PNC-induced E1 amplitude of this transition is ~100 times larger than the analogous amplitude in Cs. Such an experiment will determine differences in PNC effects between different hyperfine components for odd-neutron-number Yb isotopes and, thereby, will allow measurements of the nuclear anapole moments in nuclei with unpaired neutrons. In addition, measurements of PNC in different isotopes would give information on neutron distributions within the nuclei. The apparatus designed and built for this experiment is described, and results of measurements towards understanding of systematic effects influencing the accuracy, and the current status of the ongoing PNC measurements are presented
    • 

    corecore